Skip to main content
Log in

Syntheses, Structural Characterization and Properties of Nickel(II) Coordination Polymer with 1,3,5-Tris(1H-pyrazol-3-yl)benzene and Succinic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The room-temperature reactions between N-donor ligands 1,3,5-Tris(1H-pyrazol-3-yl)benzene, nickel salts and Succinic acid in hydrothermal processing yielded one new coordination polymer, [Ni(H3tpb)2(Suc)]n⋅nH2O (H3tpb = 1,3,5-Tris(1H-pyrazol-3-yl)benzene, H2Suc = Succinic acid). The coordination polymer has been characterized using single-crystal X-ray diffraction and studied its infrared spectra, elemental analysis, photocatalysis analysis, powder X-ray diffraction analysis. The X-ray structural determination indicates that coordination polymer crystallizes in the monoclinic space group C2/c, with a = 25.929(5) Å, b = 17.831(4) Å, c = 17.717(4) Å, β = 124.65(3), V = 6738(3) Å3.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peng YF, Zheng LY, Han SS, Li BL, Li HY (2014) Two zinc coordination polymers showing five-fold interpenetrated diamondoid network and 2D→3D inclined polycatenation motif. Inorg Chem Commun 44:41–45

    Article  CAS  Google Scholar 

  2. Du M, Li CP, Liu CS, Fang SM (2013) Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coord Chem Rev 257:1282–1305

    Article  CAS  Google Scholar 

  3. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  4. Pan M, Lin XM, Li GB, Su CY (2011) Progress in the study of metal–organic materials applying naphthalene diimide (NDI) ligands. Coord Chem Rev 255:1921–1936

    Article  CAS  Google Scholar 

  5. Cui YJ, Yue YF, Qian GD, Chen BL (2012) Luminescent functional metal–organic frameworks. Chem Rev 112:1126–1162

    Article  CAS  Google Scholar 

  6. Zhang LY, Liu Y, Li K, Pan M, Yan C, Wei SC, Chen YX, Su CY (2013) Formation of 0D M5L2 helicate cage and 1D loop-and-chain complexes: stepwise assembly and catalytic activity. CrystEngComm 15:7106–7112

    Article  CAS  Google Scholar 

  7. Wang SJ, Li L, Zhang JY, Yuan XC, Su CY (2011) Anion-tuned sorption and catalytic properties of a soft metal–organic solid with polycatenated frameworks. J Mater Chem 21:7098–7104

    Article  CAS  Google Scholar 

  8. Li M, Zhao S, Peng YF, Li BL, Li HY (2013) A polythreading array formed by a (3,5)-connected 3D anionic network and 1D cationic chains: synthesis, structure, and catalytic properties. Dalton Trans 42:9771–9776

    Article  CAS  Google Scholar 

  9. Xiao SL, Liu YG, Qin L, Cui GH (2013) A hexanuclear CuII-based coordination framework with non-interpenetrated α-Po topology displaying catalytic activity. Inorg Chem Commun 36:220–223

    Article  CAS  Google Scholar 

  10. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943

    Article  CAS  Google Scholar 

  11. Murray LJ, Dincă M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  12. Liao PQ, Zhou DD, Zhu AX, Jiang L, Lin RB, Zhang JP, Chen XM (2012) Strong and dynamic CO2 sorption in a flexible porous framework possessing guest chelating claws. J Am Chem Soc 134:17380–17383

    Article  CAS  Google Scholar 

  13. Fu L, Liu Y, Pan M, Kuang XJ, Yan C, Li K, Wei SC, Su CY (2013) Accumulation of versatile iodine species by a porous hydrogen-bonding Cu(II) coordination framework. J Mater Chem A 1:8575–8580

    Article  CAS  Google Scholar 

  14. Chen BL, Xiang SC, Qian GD (2010) Metal–organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124

    Article  CAS  Google Scholar 

  15. Huang HW, Chen G, Zhang YH (2014) Two Bi-based phosphate photocatalysts: crystal structure, optical property and photocatalytic activity. Inorg Chem Commun 44:46–49

    Article  CAS  Google Scholar 

  16. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  17. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  18. Feng ND, Wang Q, Zheng AM, Zhang ZF, Fan J, Liu SB, Amoureux JP, Deng F (2013) Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 135:1607–1616

    Article  CAS  Google Scholar 

  19. Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251

    Article  CAS  Google Scholar 

  20. Astakhov AV, Khazipov OV, Degtyareva ES, Khrustalev VN, Chernyshev VM, Ananikov VP (2015) Facile hydrolysis of nickel(II) complexes with N-heterocyclic carbene ligands. Organometallics 34:5759–5766

    Article  CAS  Google Scholar 

  21. Cui JW, Hou SX, Hecke KV, Cui GH (2017) Rigid versus semi-rigid bis(imidazole) ligands in the assembly of two Co(II) coordination polymers: structural variability, electrochemical properties and photocatalytic behavior. Dalton Trans 46:2892–2903

    Article  CAS  Google Scholar 

  22. Cui JW, Hou SX, Li YH, Cui GH (2017) A multifunctional Ni(II) coordination polymer: synthesis, crystal structure and applications as a luminescent sensor, electrochemical probe, and photocatalyst. Dalton Trans 46:16911–16924

    Article  CAS  Google Scholar 

  23. Li JX, Qin ZB, Li YH, Cui GH (2018) Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason Sonochem 48:127–135

    Article  CAS  Google Scholar 

  24. Huang YJ, Pan YR, Du G, Xuan Y (2017) Syntheses, crystal structure determinations of two-dimensional main-group p-block metal lead(II) complexes. Polyhedron. 127:212–216

    Article  CAS  Google Scholar 

  25. Pleier AK, Glas H, Grosche M, Sirsch P, Thiel WR (2001) Microwave assisted synthesis of 1-aryl-3-dimethylaminoprop-2-enones: a simple and rapid access to 3(5)-arylpyrazoles. Synthesis 1:55–62

    Article  Google Scholar 

  26. Zhao WX, Gao YX, Dong SF, Lia Y, Zhang WP (2007) 1,3,5-Tris(1H-pyrazol-3-yl)benzene. Acta Cryst Sect E E63:o3448

    Article  Google Scholar 

  27. Sheldrick GM (2015) Acta Cryst Sect A 71:3–8

    Article  Google Scholar 

  28. Spek AL (2009) Acta Cryst D65:148–155

    Google Scholar 

  29. Spek AL (2003) J Appl Cryst 36:7–13

    Article  CAS  Google Scholar 

  30. Müller R, Herbst-Irmer R, Spek AL, Schneider TR, Sawaya MR (2006) Crystal structure refinement. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

Supported by National Natural Science Foundation of China (Item No. 21671003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ju Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YJ., Du, G. & Zhang, J. Syntheses, Structural Characterization and Properties of Nickel(II) Coordination Polymer with 1,3,5-Tris(1H-pyrazol-3-yl)benzene and Succinic Acid. J Chem Crystallogr 50, 28–34 (2020). https://doi.org/10.1007/s10870-018-0755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0755-x

Keywords

Navigation