Skip to main content
Log in

A novel superparamagnetic iron oxide nanoparticles-based SPECT/MRI dual-modality probe for tumor imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Multimodal imaging has become a trend in the development of molecular imaging. For SPECT/MRI dual-modality imaging, we developed a SPECT/MRI dual-modality probe based on superparamagnetic iron oxide nanoparticles. RGDyk peptide and DTPA chelator were used to realize the functionalization of nanoparticles. Both SPECT imaging and T2-weighted MR imaging in vivo on 4T1 tumor-bearing mice showed targeting of the probe, demonstrating the potential of the SPECT/MRI dual-modality probe as a tool for tumor evaluation and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liang R, Wei M, Evans DG, Duan X (2014) Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun (Camb Engl) 50:14071–14081. https://doi.org/10.1039/c4cc03118k

    Article  CAS  Google Scholar 

  2. Wang YXJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331. https://doi.org/10.1007/s003300100908

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5:7664–7684. https://doi.org/10.1039/c3nr01616a

    Article  CAS  PubMed  Google Scholar 

  4. Zhao ZH, Zhou ZJ, Bao JF, Wang ZY, Hu J, Chi XQ, Ni KY, Wang RF, Chen XY, Chen Z, Gao JH (2013) Octapod iron oxide nanoparticles as high-performance T-2 contrast agents for magnetic resonance imaging. Nat Commun 4:7. https://doi.org/10.1038/ncomms3266

    Article  CAS  Google Scholar 

  5. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21:2133–2148. https://doi.org/10.1002/adma.200802366

    Article  CAS  Google Scholar 

  6. Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian GH (2011) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials 32:1167–1176. https://doi.org/10.1016/j.biomaterials.2010.10.013

    Article  CAS  PubMed  Google Scholar 

  7. Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui XJ, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, de Rosales RTM (2013) Bisphosphonate-anchored PEGylation and Radiolabeling of Superparamagnetic Iron Oxide: long-circulating nanoparticles for in vivo Multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512. https://doi.org/10.1021/nn3046055

    Article  CAS  PubMed  Google Scholar 

  8. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:845–855. https://doi.org/10.2967/jnumed.111.098608

    Article  PubMed  Google Scholar 

  9. Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, Kordas GC, Mihailidis D, Nikiforidis GC, Xanthopoulos S, Psimadas D, Paravatou-Petsotas M, Palamaris L, Hazle JD, Kagadis GC (2014) 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci 433:163–175. https://doi.org/10.1016/j.jcis.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  10. Deng SM, Zhang W, Zhang B, Hong RY, Chen Q, Dong JJ, Chen YY, Chen ZQ, Wu YW (2015) Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. J Nanopart Res 17:11. https://doi.org/10.1007/s11051-014-2845-9

    Article  CAS  Google Scholar 

  11. Xie WS, Guo ZH, Gao F, Gao Q, Wang D, Liaw BS, Cai Q, Sun XD, Wang XM, Zhao LY (2018) Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics 8:3284–3307. https://doi.org/10.7150/thno.25220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of Superparamagnetic Iron oxide nanoparticles. Chem Rev 112:2323–2338. https://doi.org/10.1021/cr2002596

    Article  CAS  PubMed  Google Scholar 

  13. Rosen JE, Chan L, Shieh DB, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomed Nanatechnol Biol Med 8:275–290. https://doi.org/10.1016/j.nano.2011.08.017

    Article  CAS  Google Scholar 

  14. Frimpong RA, Hilt JZ (2010) Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications. Nanomed Nanatechnol Biol Med 5:1401–1414. https://doi.org/10.2217/nnm.10.114

    Article  CAS  Google Scholar 

  15. Cheraghipour E, Tamaddon AM, Javadpour S, Bruce IJ (2013) PEG conjugated citrate-capped magnetite nanoparticles for biomedical applications. J Magn Magn Mater 328:91–95. https://doi.org/10.1016/j.jmmm.2012.09.042

    Article  CAS  Google Scholar 

  16. Lee N, Hummer DR, Sverjensky DA, Rajh T, Hazen RM, Steele A, Cody GD (2012) Speciation of L-DOPA on Nanorutile as a function of pH and Surface Coverage using surface-enhanced Raman Spectroscopy (SERS). Langmuir 28:17322–17330. https://doi.org/10.1021/la303607a

    Article  CAS  PubMed  Google Scholar 

  17. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9:4042–4048. https://doi.org/10.1021/nl902212q

    Article  CAS  PubMed  Google Scholar 

  18. Zirbs R, Lassenberger A, Vonderhaid I, Kurzhals S, Reimhult E (2015) Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density. Nanoscale 7:11216–11225. https://doi.org/10.1039/c5nr02313k

    Article  CAS  PubMed  Google Scholar 

  19. Gomes CM, Abrunhosa AJ, Ramos P, Pauwels EKJ (2011) Molecular imaging with SPECT as a tool for drug development. Adv Drug Deliv Rev 63:547–554. https://doi.org/10.1016/j.addr.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  20. Jaszczak RJ (2006) The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol 51:R99–R115. https://doi.org/10.1088/0031-9155/51/13/r07

    Article  PubMed  Google Scholar 

  21. Atkins HL, Hauser W, Nelson KG, Richards P (1969) Technetium-99m DTPA: a new radiopharmaceutical for brain and kidney scanning. Am J Clin Pathol 52:90

    Google Scholar 

  22. Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, Tarin D, Shattil SJ, Cheresh DA (2009) An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15:1163–1169. https://doi.org/10.1038/nm.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xie J, Chen K, Lee HY, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J Am Chem Soc 130:7542–7543. https://doi.org/10.1021/ja802003h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205. https://doi.org/10.1021/ja026501x

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Chen T, Wu C, Qiu L, Hu R, Li J, Cansiz S, Zhang L, Cui C, Zhu G, You M, Zhang T, Tan W (2014) Facile surface functionalization of hydrophobic magnetic nanoparticles. J Am Chem Soc 136:12552–12555. https://doi.org/10.1021/ja5060324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gulley-Stahl H, Hogan PA, Schmidt WL, Wall SJ, Buhrlage A, Bullen HA (2010) Surface complexation of catechol to metal oxides: an ATR-FTIR, adsorption, and dissolution study. Environ Sci Technol 44:4116–4121. https://doi.org/10.1021/es902040u

    Article  CAS  PubMed  Google Scholar 

  27. Wang DK, Varanasi S, Fredericks PM, Hill DJ, Symons AL, Whittaker AK, Rasoul F (2013) FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci Pol Chem 51:5163–5176. https://doi.org/10.1002/pola.26930

    Article  CAS  Google Scholar 

  28. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Encyclopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a5606

  29. Lee HY, Li Z, Chen K, Hsu AR, Xu C, Xie J, Sun S, Chen X (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J nucl med 49:1371–1379. https://doi.org/10.2967/jnumed.108.051243

    Article  CAS  PubMed  Google Scholar 

  30. Aryal S, Key J, Stigliano C, Landis MD, Lee DY, Decuzzi P (2014) Positron emitting magnetic nanoconstructs for PET/MR imaging. Small 10:2688–2696. https://doi.org/10.1002/smll.201303933

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Xie X, Liang S, Li M, Liu Y, Gu H (2012) Mono-dispersed high magnetic resonance sensitive magnetite nanocluster probe for detection of nascent tumors by magnetic resonance molecular imaging. Nanomed Nanatechnol Biol Med 8:996–1006. https://doi.org/10.1016/j.nano.2011.11.013

    Article  CAS  Google Scholar 

  32. Nosrati S, Shanehsazzadeh S, Yousefnia H, Gholami A, Gruttner C, Jalilian AR, Hosseini RH, Lahooti A (2016) Biodistribution evaluation of Ho-166-DTPA-SPION in normal rats. J Radioanal Nucl Chem 307:1559–1566. https://doi.org/10.1007/s10967-015-4251-x

    Article  CAS  Google Scholar 

  33. Sun H, Zhang B, Jiang X, Liu H, Deng S, Li Z, Shi H (2019) Radiolabeled ultra-small Fe3O4 nanoprobes for tumor-targeted multimodal imaging. Nanomedicine (London England) 14:5–17. https://doi.org/10.2217/nnm-2018-0219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National key R&D Program of China (No. 2019YFB1300303), National Natural Science Foundation of China (12175270, U2067214, 11875028), Beijing Natural Science Foundation (2202063), Natural Science Foundation of Shandong Province (ZR2021MA104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Wang or Wenjiang Yang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, W., Zhang, G., Xue, J. et al. A novel superparamagnetic iron oxide nanoparticles-based SPECT/MRI dual-modality probe for tumor imaging. J Radioanal Nucl Chem 332, 1237–1244 (2023). https://doi.org/10.1007/s10967-022-08741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08741-z

Keywords

Navigation