Skip to main content
Log in

Systematic effect of different external metals of hexacyanoferrates on cesium adsorption behavior and mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to investigate Cs removal by different external metals hexacyanoferrates MII–Fe PBA (MII: Co, Ni and Cu). Three PBAs were synthesized, characterized and followed by batch experiment testing and model fitting. Among the three PBAs, Cu–Fe PBA possessed the highest capacity 234.28 mg g−1, the highest Kd 2.8 × 106 mL g−1 and the fastest adsorption kinetics on Cs removal. Moreover, Cu–Fe PBA and Ni–Fe PBA were the more selective sorbents in coexisting ions study. Finally, the adsorption mechanism was proposed. This study provides new insights into the vacancies effect of the PBA structure and Cs adsorption application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoshida N, Kanda J (2012) Geochemistry. Tracking the Fukushima radionuclides. Science 336:1115–1116. https://doi.org/10.1126/science.1219493

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Zhuang S, Liu Y (2018) Metal hexacyanoferrates-based adsorbents for cesium removal. Coord Chem Rev 374:430–438. https://doi.org/10.1016/j.ccr.2018.07.014

    Article  CAS  Google Scholar 

  3. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530. https://doi.org/10.1016/j.jhazmat.2017.10.047

    Article  CAS  PubMed  Google Scholar 

  4. Ludi A., Güdel HU (1973) Structural chemistry of polynuclear transition metal cyanides. In: Inorganic chemistry. Structure and bonding, vol 14. Springer, Berlin. https://doi.org/10.1007/BFb0016869

  5. Naidu G, Nur T, Loganathan P, Kandasamy J, Vigneswaran S (2016) Selective sorption of rubidium by potassium cobalt hexacyanoferrate. Sep Purif Technol 163:238–246. https://doi.org/10.1016/j.seppur.2016.03.001

    Article  CAS  Google Scholar 

  6. Parajuli D, Takahashi A, Noguchi H, Kitajima A, Tanaka H, Takasaki M, Yoshino K, Kawamoto T (2016) Comparative study of the factors associated with the application of metal hexacyanoferrates for environmental Cs decontamination. Chem Eng J 283:1322–1328. https://doi.org/10.1016/j.cej.2015.08.076

    Article  CAS  Google Scholar 

  7. Mimura H, Lehto J, Harjula R (1997) Ion exchange of cesium on potassium nickel hexacyanoferrate (II)s. J Nucl Sci Technol 34:484–489. https://doi.org/10.1080/18811248.1997.9733695

    Article  CAS  Google Scholar 

  8. Takahashi A, Minami N, Tanaka H, Sue K, Minami K, Parajuli D, Lee K-M, Ohkoshi S-i, Kurihara M, Kawamoto T (2015) Efficient synthesis of size-controlled open-framework nanoparticles fabricated with a micro-mixer: route to the improvement of Cs adsorption performance. Green Chem 17:4228–4233. https://doi.org/10.1039/c5gc00757g

    Article  CAS  Google Scholar 

  9. Yang H-M, Park CW, Kim I, Yoon I-H (2020) Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water. Chem Eng J 392. https://doi.org/10.1016/j.cej.2019.123713

  10. Lee EFT, Streat M (1983) Sorption of caesium by complex hexacyanoferrates. v. A comparison of some cyanoferrates. J Chem Tech Biotechnol 33:333–338. https://doi.org/10.1002/jctb.504330204

    Article  Google Scholar 

  11. Ishizaki M, Akiba S, Ohtani A, Hoshi Y, Ono K, Matsuba M, Togashi T, Kananizuka K, Sakamoto M, Takahashi A, Kawamoto T, Tanaka H, Watanabe M, Arisaka M, Nankawa T, Kurihara M (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055. https://doi.org/10.1039/c3dt51637g

    Article  CAS  PubMed  Google Scholar 

  12. Yu Z-E, Cheng H, Lyu Y, Liu Y, Zhou J, Chen R, Guo B (2021) A vacancy-free sodium manganese hexacyanoferrate as cathode for sodium-ion battery by high-salt-concentration preparation. J Alloys Compd 887. https://doi.org/10.1016/j.jallcom.2021.161388

  13. Takahashi A, Tanaka H, Minami K, Noda K, Ishizaki M, Kurihara M, Ogawa H, Kawamoto T (2018) Unveiling Cs-adsorption mechanism of Prussian blue analogs: Cs(+)-percolation via vacancies to complete dehydrated state. RSC Adv 8:34808–34816. https://doi.org/10.1039/c8ra06377j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents—a mini-review. Molecules 20:20582–20613. https://doi.org/10.3390/molecules201119718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aguila D, Prado Y, Koumousi ES, Mathoniere C, Clerac R (2016) Switchable Fe/Co Prussian blue networks and molecular analogues. Chem Soc Rev 45:203–224. https://doi.org/10.1039/c5cs00321k

    Article  CAS  PubMed  Google Scholar 

  16. Kim M, Park J-H, Lim J-M, Kim H, Kim S (2021) Conventional and photoinduced radioactive 137Cs removal by adsorption on FeFe, CoFe, and NiFe Prussian blue analogues. Chem Eng J 405. https://doi.org/10.1016/j.cej.2020.126568

  17. Cano A, Rodríguez-Hernández J, Reguera L, Rodríguez-Castellón E, Reguera E (2019) On the scope of XPS as sensor in coordination chemistry of transition metal hexacyanometallates. Eur J Inorg Chem 2019:1724–1732. https://doi.org/10.1002/ejic.201801556

    Article  CAS  Google Scholar 

  18. Trung ND, Ping N, Dan HK (2022) Synthesis, characterization, and the effectiveness of cobalt hexacyanoferrate nanoparticles in Cs+ adsorbent application. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-022-00265-x

    Article  Google Scholar 

  19. Ke Y, Li Y, Zhu L, Zhou Y, Liu D (2020) Rapid enrichment of cesium ions in aqueous solution by copper ferrocyanide powder. SN Appl Sci 2. https://doi.org/10.1007/s42452-020-2337-8

  20. Bhatt P, Banerjee S, Mukadam MD, Jha P, Navaneethan M, Yusuf SM (2022) Enhanced hydrogen adsorption in alkali metal based copper hexacyanoferrate Prussian blue analogue nanocubes. J Power Sources 542. https://doi.org/10.1016/j.jpowsour.2022.231816

  21. Liu J, Li X, Rykov AI, Fan Q, Xu W, Cong W, Jin C, Tang H, Zhu K, Ganeshraja AS, Ge R, Wang X, Wang J (2017) Zinc-modulated Fe–Co Prussian blue analogues with well-controlled morphologies for the efficient sorption of cesium. J Mater Chem A 5:3284–3292. https://doi.org/10.1039/c6ta10016c

    Article  CAS  Google Scholar 

  22. Vincent T, Vincent C, Barré Y, Guari Y, Le Saout G, Guibal E (2014) Immobilization of metal hexacyanoferrates in chitin beads for cesium sorption: Synthesis and characterization. J Mater Chem A 2. https://doi.org/10.1039/C4TA01128G

  23. Yoon CM, Ryu J, Yun J, Kim YK, Jang J (2018) Synthesis of hierarchical Silica/Titania hollow nanoparticles and their enhanced electroresponsive activity. ACS Appl Mater Inter 10:6570–6579. https://doi.org/10.1021/acsami.7b18895

    Article  CAS  Google Scholar 

  24. Bu F-X, Hu M, Zhang W, Meng Q, Xu L, Jiang D-M, Jiang J-S (2015) Three-dimensional hierarchical Prussian blue composed of ultrathin nanosheets: enhanced hetero-catalytic and adsorption properties. Chem Commun 51:17568–17571. https://doi.org/10.1039/C5CC06281K

    Article  CAS  Google Scholar 

  25. Zhang N, Kawamoto T, Jiang Y, Takahashi A, Ishizaki M, Asai M, Kurihara M, Zhang Z, Lei Z, Parajuli D (2019) Interpretation of the role of composition on the inclusion efficiency of the monovalent cations onto cobalt hexacyanoferrate. Chem Eur J 25. https://doi.org/10.1002/chem.201900097

  26. Nordstrand J, Toledo-Carrillo E, Kloo L, Dutta J (2022) Sodium to cesium ions: a general ladder mechanism of ion diffusion in prussian blue analogs. Phys Chem Chem Phys 24:12374–12382. https://doi.org/10.1039/d2cp01156e

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Zhao X, Wei J, Li F (2015) Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem Eng J 275:262–270. https://doi.org/10.1016/j.cej.2015.04.052

    Article  CAS  Google Scholar 

  28. Zhang H, Qi J, Liu F, Wang Z, Ma X, He D (2021) One-pot synthesis of magnetic Prussian blue for the highly selective removal of thallium(I) from wastewater: Mechanism and implications. J Hazard Mater 423:126972. https://doi.org/10.1016/j.jhazmat.2021.126972

    Article  CAS  PubMed  Google Scholar 

  29. Lee IH, Kuan Y-C, Chern J-M (2007) Equilibrium and kinetics of heavy metal ion exchange. J Chin Inst Chem Eng 38:71–84. https://doi.org/10.1016/j.jcice.2006.11.001

    Article  Google Scholar 

  30. Singh S, Townsend T, Mazyck D, Boyer T (2011) Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro- and meso-porous activated carbon. Water Res 46:491–499. https://doi.org/10.1016/j.watres.2011.11.007

    Article  CAS  PubMed  Google Scholar 

  31. Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100. https://doi.org/10.1016/j.jcis.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  32. Alamudy HA, Cho K (2018) Selective adsorption of cesium from an aqueous solution by a montmorillonite-prussian blue hybrid. Chem Eng J 349:595–602. https://doi.org/10.1016/j.cej.2018.05.137

    Article  CAS  Google Scholar 

  33. Chang L, Chang S, Chen W, Han W, Li Z, Zhang Z, Dai Y, Chen D (2016) Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal. RSC adv 6:96223–96228. https://doi.org/10.1039/C6RA17525B

    Article  CAS  Google Scholar 

  34. Vincent C, Hertz A, Vincent T, Barré Y, Guibal E (2014) Immobilization of inorganic ion-exchanger into biopolymer foams—application to cesium sorption. Chem Eng J 236:202–211. https://doi.org/10.1016/j.cej.2013.09.087

    Article  CAS  Google Scholar 

  35. Chen X, Li Y, Zhu L, Ke Y, Wang X, Yang Y (2020) High-efficiency continuous enrichment of cesium ions using CuFC composite microspheres: dynamic adsorption and mechanism analysis. J Radioanal Nucl Chem 326:959–973. https://doi.org/10.1007/s10967-020-07378-0

    Article  CAS  Google Scholar 

  36. Naeimi S, Faghihian H (2017) Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Sep Purif Technol 175:255–265. https://doi.org/10.1016/j.seppur.2016.11.028

    Article  CAS  Google Scholar 

  37. Lehto J, Harjula R, Wallace J (1987) Absorption of cesium on potassium cobalt hexacyanoferrate(II). J Radioanal Nucl Chem 111:297–304. https://doi.org/10.1007/BF02072863

    Article  CAS  Google Scholar 

  38. Michel C, Barré Y, de Dieuleveult C, Grandjean A, De Windt L (2015) Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support. Chem Eng Sci 137:904–913. https://doi.org/10.1016/j.ces.2015.07.043

    Article  CAS  Google Scholar 

  39. Lee EFT, Streat M (1983) Sorption of caesium by complex hexacyanoferrates iii. a study of the sorption properties of potassium copper ferrocyanide. J Chem Tech Biotechnol 33:80–86. https://doi.org/10.1002/jctb.504330203

    Article  Google Scholar 

  40. Cattermull J, Pasta M, Goodwin AL (2021) Structural complexity in Prussian blue analogues. Mater Horizons 8:3178–3186. https://doi.org/10.1039/d1mh01124c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the Chinese Academy of Sciences Pioneer “Hundred Talents Program” Young Talents (Class C). This publication reflects only the authors’ views, exempting the community from any liability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 708 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nong, C., Li, X. & Xu, J. Systematic effect of different external metals of hexacyanoferrates on cesium adsorption behavior and mechanism. J Radioanal Nucl Chem 332, 1263–1275 (2023). https://doi.org/10.1007/s10967-022-08721-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08721-3

Keywords

Navigation