Skip to main content
Log in

Solid-liquid distribution coefficients of Sr(II) at a proposed nuclear power plant site in China and their relations to cation exchange capacity and pH

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sr(II) sorption was performed using collected groundwater and soil samples surrounding the long-distance radioactive liquid effluent pipelines of a proposed nuclear power plant in China. The species, Sr2+ and SrSO4(aq), mainly contributed to the sorption process. And Sr(II) sorption, fitted well by the pseudo-second-order kinetic model, indicated that chemical sorption occurred and was dependent on the sorption capacity of soil samples. Moreover, a linear relation of solid–liquid distribution coefficients (Kd) with cation exchange capacity and pH was obtained through Pearson correlation coefficient (r) and multiple regression analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu S, Yarlagadda B, Siegel JE, Zhou S, Kim S (2020) The role of nuclear in China’s energy future: insights from integrated assessment. Energy Policy 139:111344. https://doi.org/10.1016/j.enpol.2020.111344

    Article  Google Scholar 

  2. Wang J, Zhang L, Qu J (2022) Distribution laws for radioisotopes in receiving freshwater of Inland Nuclear Power Plant. Ann Nucl Energy 166:108656. https://doi.org/10.1016/j.anucene.2021.108656

    Article  CAS  Google Scholar 

  3. Sohrabi M, Parsouzi Z, Amrollahi R, Khamooshy C, Ghasemi M (2013) Public exposure from environmental release of radioactive material under normal operation of unit-1 Bushehr nuclear power plant. Ann Nucl Energy 55:351–358. https://doi.org/10.1016/j.anucene.2012.12.002

    Article  CAS  Google Scholar 

  4. Li S, Wang H, Zhang Y (2021) Assessment of supervision monitoring for radiation environment around the typical research reactors in China. Nucl Eng Technol 53:4150–4157. https://doi.org/10.1016/j.net.2021.06.032

    Article  CAS  Google Scholar 

  5. Liang J, Li J, Li X, Liu K, Wu L, Shan G (2020) The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Sep Purif Technol 230:115874. https://doi.org/10.1016/j.seppur.2019.115874

    Article  CAS  Google Scholar 

  6. Du C, Zuo R, Chen M, Wang J, Liu X, Liu L, Lin Y (2020) Influence of colloidal Fe(OH)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site. Environ Pollut 260:113997. https://doi.org/10.1016/j.envpol.2020.113997

    Article  CAS  PubMed  Google Scholar 

  7. Pors Nielsen S (2004) The biological role of strontium. Bone 35:583–588. https://doi.org/10.1016/j.bone.2004.04.026

    Article  CAS  PubMed  Google Scholar 

  8. Brahimi A, Mellah A, Hanini S (2021) Adsorption of strontium(II) ions from aqueous solution onto bottom ash of expired drug incineration. J Radioanal Nucl Chem 330:929–940. https://doi.org/10.1007/s10967-021-08054-7

    Article  CAS  Google Scholar 

  9. Huang Y, Yang S, Zhang S, Wang N, Ni S, Wang Y (2016) Detection of strontium present in groundwater using PHREEQC simulation. Asian J Chem 28:1059–1063. https://doi.org/10.14233/ajchem.2016.19585

  10. Forsberg S, Rosén K, Fernandez V, Juhan H (2000) Migration of 137Cs and 90Sr in undisturbed soil profiles under controlled and close-to-real conditions. J Environ Radioact 50:235–252. https://doi.org/10.1016/S0265-931X(00)00015-1

    Article  CAS  Google Scholar 

  11. Kirchner G (1998) Applicability of compartmental models for simulating the transport of radionuclides in soil. J Environ Radioact 38:339–352. https://doi.org/10.1016/S0265-931X(97)00035-0

    Article  CAS  Google Scholar 

  12. Smith JT, Elder DG (1999) A comparison of models for characterizing the distribution of radionuclides with depth in soils. Eur J Soil Sci 50:295–307. https://doi.org/10.1046/j.1365-2389.1999.00233.x

    Article  CAS  Google Scholar 

  13. Solecki J, Chibowski S (2001) Studies on soil samples mineralization conditions preceding the determination of 90Sr. J Radioanal Nucl Chem 247:165–169. https://doi.org/10.1023/A:1006795905355

    Article  CAS  Google Scholar 

  14. Xiongxin D, Zuyl T (1999) Effect of carbonates on sorption and migration of radiostrontium in calcareous soil. J Radioanal Nucl Chem 242:727–730. https://doi.org/10.1007/BF02347386

    Article  Google Scholar 

  15. Bugai D, Smith J, Hoque MA (2020) Solid–liquid distribution coefficients (Kd-s) of geological deposits at the Chernobyl Nuclear Power Plant site with respect to Sr, Cs and Pu radionuclides: a short review. Chemosphere 242:125175. https://doi.org/10.1016/j.chemosphere.2019.125175

    Article  CAS  PubMed  Google Scholar 

  16. Hu B, Hu Q, Xu D, Chen C (2017) Macroscopic and microscopic investigation on adsorption of Sr(II) on sericite. J Mol Liq 225:563–568. https://doi.org/10.1016/j.molliq.2016.11.102

    Article  CAS  Google Scholar 

  17. Solecki J (2005) Investigation of 85Sr adsorption on selected soils of different horizons. J Environ Radioact 82:303–320. https://doi.org/10.1016/j.jenvrad.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  18. Aba A, Al-Boloushi O, Ismaeel A, Al-Tamimi S (2021) Migration behavior of radiostrontium and radiocesium in arid-region soil. Chemosphere 281:130953. https://doi.org/10.1016/j.chemosphere.2021.130953

    Article  CAS  PubMed  Google Scholar 

  19. Mendez JC, Hiemstra T (2020) High and low affinity sites of ferrihydrite for metal ion adsorption: data and modeling of the alkaline-earth ions Be, Mg, Ca, Sr, Ba, and Ra. Geochim Cosmochim Acta 286:289–305. https://doi.org/10.1016/j.gca.2020.07.032

    Article  CAS  Google Scholar 

  20. Vandenhove H, Gil-García C, Rigol A, Vidal M (2009) New best estimates for radionuclide solid–liquid distribution coefficients in soils. Part 2. Naturally occurring radionuclides. J Environ Radioact 100:697–703. https://doi.org/10.1016/j.jenvrad.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  21. de Souza Braz AM, Fernandes AR, Ferreira JR, Alleoni LRF (2013) Prediction of the distribution coefficients of metals in Amazonian soils. Ecotoxicol Environ Saf 95:212–220. https://doi.org/10.1016/j.ecoenv.2013.05.007

    Article  CAS  Google Scholar 

  22. Smičiklas I, Jović M, Šljivić-Ivanović M, Mrvić V, Čakmak D, Dimović S (2015) Correlation of Sr2+ retention and distribution with properties of different soil types. Geoderma 253–254:21–29. https://doi.org/10.1016/j.geoderma.2015.04.003

    Article  CAS  Google Scholar 

  23. Kasar S, Mishra S, Sahoo SK, Kavasi N, Omori Y, Arae H, Sorimachi A, Aono T (2021) Sorption-desorption coefficients of uranium in contaminated soils collected around Fukushima Daiichi Nuclear Power Station. J Environ Radioact 233:106617. https://doi.org/10.1016/j.jenvrad.2021.106617

    Article  CAS  PubMed  Google Scholar 

  24. Lee H-K, Kim J-H, Kim I, Jeon H (2021) Efficient separation performance of suspended soil and strontium from aqueous solution using magnetic flocculant. J Environ Chem Eng 9:106810. https://doi.org/10.1016/j.jece.2021.106810

    Article  CAS  Google Scholar 

  25. El-Taher A (2010) Elemental analysis of two Egyptian phosphate rock mines by instrumental neutron activation analysis and atomic absorption spectrometry. Appl Radiat Isot 68:511–515. https://doi.org/10.1016/j.apradiso.2009.11.045

    Article  CAS  PubMed  Google Scholar 

  26. El-Taher A (2010) Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis. Appl Radiat Isot 68:1859–1863. https://doi.org/10.1016/j.apradiso.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  27. El-Taher A (2010) Determination of chromium and trace elements in El-Rubshi chromite from Eastern Desert, Egypt by neutron activation analysis. Appl Radiat Isot 68:1864–1868. https://doi.org/10.1016/j.apradiso.2010.04.018

    Article  CAS  PubMed  Google Scholar 

  28. El-Taher A (2010) INAA and DNAA for uranium determination in geological samples from Egypt. Appl Radiat Isot 68:1189–1192. https://doi.org/10.1016/j.apradiso.2010.01.046

    Article  CAS  PubMed  Google Scholar 

  29. El-Taher A (2010) Elemental content of feldspar from Eastern Desert, Egypt, determined by INAA and XRF. Appl Radiat Isot 68:1185–1188. https://doi.org/10.1016/j.apradiso.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  30. Bradbury MH, Baeyens B (1998) A physicochemical characterisation and geochemical modelling approach for determining porewater chemistries in argillaceous rocks. Geochim Cosmochim Acta 62:783–795. https://doi.org/10.1016/S0016-7037(97)00387-6

    Article  CAS  Google Scholar 

  31. Xu H, Croot P, Zhang C (2022) Exploration of the spatially varying relationships between lead and aluminium concentrations in the topsoil of northern half of Ireland using Geographically Weighted Pearson Correlation Coefficient. Geoderma 409:115640. https://doi.org/10.1016/j.geoderma.2021.115640

    Article  CAS  Google Scholar 

  32. Chen C-C, Hayes KF (1999) X-ray absorption spectroscopy investigation of aqueous Co(II) and Sr(II) sorption at clay–water interfaces. Geochim Cosmochim Acta 63:3205–3215. https://doi.org/10.1016/S0016-7037(99)00245-8

    Article  CAS  Google Scholar 

  33. Song H, Chung H, Nam K (2021) Response surface modeling with Box–Behnken design for strontium removal from soil by calcium-based solution. Environ Pollut 274:116577. https://doi.org/10.1016/j.envpol.2021.116577

    Article  CAS  PubMed  Google Scholar 

  34. Song H, Chung H, Nam K (2021) Effect of monovalent and divalent ion solutions as washing agents on the removal of Sr and Cs from soil near a nuclear power plant. J Hazard Mater 412:125165. https://doi.org/10.1016/j.jhazmat.2021.125165

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Wei M (2022) Evaluation on adsorption capacity of low organic matter soil for hydrophobic organic pollutant. J Environ Chem Eng 10:107561. https://doi.org/10.1016/j.jece.2022.107561

    Article  CAS  Google Scholar 

  36. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:66. https://doi.org/10.1016/j.apgeochem.2012.04.007

    Article  CAS  Google Scholar 

  37. Hull LC, Schafer AL (2008) Accelerated transport of 90Sr following a release of high ionic strength solution in vadose zone sediments. J Contam Hydrol 97:135–157. https://doi.org/10.1016/j.jconhyd.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  38. Parkhurst D, Appelo T (2000) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USDept Int, USGeol Surv, Techniques of Water-Resources Investigation, Report: 99-4259. https://doi.org/10.3133/wri994259

  39. Higgo JJW (1987) Clay as a barrier to radionuclide migration. Prog Nucl Energy 19:173–207. https://doi.org/10.1016/0149-1970(87)90015-1

    Article  CAS  Google Scholar 

  40. Wu H, Xu Z, Zhu L, Cheng X, Kang M (2022) Adsorption of strontium at K-feldspar–water interface. Appl Radiat Isot 181:110111. https://doi.org/10.1016/j.apradiso.2022.110111

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Shao Z, Chen C, Hu J, Chen H (2014) Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite. Appl Clay Sci 87:1–6. https://doi.org/10.1016/j.clay.2013.11.021

    Article  CAS  Google Scholar 

  42. Chiang PN, Wang MK, Huang PM, Wang JJ, Chiu CY (2010) Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. J Environ Radioact 101:472–481. https://doi.org/10.1016/j.jenvrad.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  43. Bilgin B, Atun G, Keçeli G (2001) Adsorption of strontium on illite. J Radioanal Nucl Chem 250:323–328. https://doi.org/10.1023/A:1017960015760

    Article  CAS  Google Scholar 

  44. Lu N, Mason CFV (2001) Sorption-desorption behavior of strontium-85 onto montmorillonite and silica colloids. Appl Geochem 16:1653–1662. https://doi.org/10.1016/S0883-2927(01)00060-9

    Article  CAS  Google Scholar 

  45. Todorović M, Milonjić SK, Čomor JJ, Gal IJ (1992) Adsorption of radioactive ions 137Cs+, 85Sr2+, and 60Co2+ on natural magnetite and hematite. Sep Sci Technol 27:671–679. https://doi.org/10.1080/01496399208018910

    Article  Google Scholar 

  46. Adina N, Lupa L, Mihaela C, Negrea P (2013) Characterization of strontium adsorption from aqueous solutions using inorganic materials impregnated with ionic liquid. Int J Chem Eng Appl 4:326–331. https://doi.org/10.7763/IJCEA.2013.V4.319

    Article  CAS  Google Scholar 

  47. Bruneel Y, Van Laer L, Brassinnes S, Smolders E (2021) Radiostrontium sorption on natural glauconite sands of the Neogene-Paleogene formations in Belgium. J Environ Radioact 233:106588. https://doi.org/10.1016/j.jenvrad.2021.106588

    Article  CAS  PubMed  Google Scholar 

  48. Kamel NHM (2010) Adsorption models of 137Cs radionuclide and Sr(II) on some Egyptian soils. J Environ Radioact 101:297–303. https://doi.org/10.1016/j.jenvrad.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  49. Liu H-J, Xie S-B, Xia L-S, Tang Q, Kang X, Huang F (2016) Study on adsorptive property of bentonite for cesium. Environ Earth Sci 75:148. https://doi.org/10.1007/s12665-015-4941-2

    Article  CAS  Google Scholar 

  50. Szenknect S, Ardois C, Gaudet J-P, Barthès V (2005) Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling. J Contam Hydrol 76:139–165. https://doi.org/10.1016/j.jconhyd.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  51. Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. https://doi.org/10.1016/j.jhazmat.2005.12.043

    Article  CAS  PubMed  Google Scholar 

  52. Kasar S, Mishra S, Omori Y, Sahoo SK, Kavasi N, Arae H, Sorimachi A, Aono T (2020) Sorption and desorption studies of Cs and Sr in contaminated soil samples around Fukushima Daiichi Nuclear Power Plant. J Soils Sedim 20:392–403. https://doi.org/10.1007/s11368-019-02376-6

    Article  CAS  Google Scholar 

  53. Abukhadra MR, Eid MH, El-Meligy MA, Sharaf M, Soliman AT (2021) Insight into chitosan/mesoporous silica nanocomposites as eco-friendly adsorbent for enhanced retention of U(VI) and Sr(II) from aqueous solutions and real water. Int J Biol Macromol 173:435–444. https://doi.org/10.1016/j.ijbiomac.2021.01.136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of China General Nuclear Power Corporation (Grant Number 45000-71021220), Pinnacle project of key technology of seawater cooling tower in nuclear power plant of CGNPC, and National Natural Science Foundation of China (Grant Numbers 41773095 and 21906187). The authors whose names are listed immediately above certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. This statement is approved by all the authors to indicate agreement that the above information is true and correct.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanyu Wu or Mingliang Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Sun, L., Yang, J. et al. Solid-liquid distribution coefficients of Sr(II) at a proposed nuclear power plant site in China and their relations to cation exchange capacity and pH. J Radioanal Nucl Chem 332, 1019–1031 (2023). https://doi.org/10.1007/s10967-022-08702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08702-6

Keywords

Navigation