Skip to main content
Log in

Effect of land use and vegetation coverage on level and distribution of plutonium isotopes in the northern Loess Plateau, China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ten soil cores were collected from slopes and gully bottoms in the Loess Plateau, China, and analyzed for plutonium isotopes to investigate their source, level, and distribution in the Liudaogou Catchment of the Loess Plateau. The soil 240Pu/239Pu atomic ratios (0.158–0.209) suggested that global fallout is the dominant source of Pu in this area. The 239,240Pu inventories (0.94–77.91 Bq m− 2) indicated that up to 80% of Pu was lost due to severe soil erosion in the past decades. Land use types, vegetation coverage, and topography significantly influence the preservation and redistribution of Pu, and alfalfa might be a promising restoration plant for mitigating soil erosion on the northern Loess Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2000 report to the General Assembly, with scientific annexes. United Nations, New York

    Google Scholar 

  2. Myasoedov BF, Pavlotskaya FI (1989) Measurement of radioactive nuclides in the environment. Analyst 114:255. https://doi.org/10.1039/an9891400255

    Article  CAS  Google Scholar 

  3. Lind OC, Salbu B, Janssens K, Proost K, Dahlgaard H (2005) Characterization of uranium and plutonium containing particles originating from the nuclear weapons accident in Thule, Greenland, 1968. J Environ Radioact 81:21–32. https://doi.org/10.101/j.jenvrad.2004.10.013

    Article  CAS  PubMed  Google Scholar 

  4. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep 2:304. https://doi.org/10.1038/srep00304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ketterer ME, Szechenyi SC (2008) Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: a historical perspective and new frontiers in the environmental sciences. Spectrochim Acta Part B At Spectrosc 63:719–737. https://doi.org/10.1016/j.sab.2008.04.018

    Article  CAS  Google Scholar 

  6. Bu WT, Fukuda M, Zheng J, Aono T, Ishimaru T, Kanda J, Yang GS, Tagami K, Uchida S, Guo QJ, Yamada M (2014) Release of Pu isotopes from the Fukushima Daiichi nuclear power plant accident to the marine environment was negligible. Environ Sci Technol 48:9070–9078. https://doi.org/10.1021/es502480y

    Article  CAS  PubMed  Google Scholar 

  7. Lujaniene G, Plukis A, Kimtys E, Remeikis V, Jankünaite D, Ogorodnikov BI (2002) Study of 137Cs, 90Sr, 239,240Pu, 238Pu and 241Am behavior in the Chernobyl soil. J Radioanal Nucl Chem 251:59–68. https://doi.org/10.1023/a:1015185011201

    Article  CAS  Google Scholar 

  8. Skipperud L, Oughton D, Salbu B (2000) The impact of Pu speciation on distribution coefficients in Mayak soil. Sci Total Environ 257:81–93. https://doi.org/10.1016/S0048-9697(00)00443-5

    Article  CAS  PubMed  Google Scholar 

  9. Yamada M, Zheng J (2012) 239Pu and 240Pu inventories and 240Pu/239Pu atom ratios in the equatorial Pacific Ocean water column. Sci Total Environ 430:20–27. https://doi.org/10.1016/j.scitotenv.2012.04.065

    Article  CAS  PubMed  Google Scholar 

  10. Ryan JN, Illangasekare TH, Litaor MI, Shannon R (1998) Particle and Plutonium mobilization in Macroporous Soils during Rainfall Simulations. Environ Sci Technol 32:476–482. https://doi.org/10.1021/es970339u

    Article  CAS  Google Scholar 

  11. Xu YH, Pan SM, Wu MM, Zhang KX, Hao YP (2017) Association of Plutonium isotopes with natural soil particles of different size and comparison with 137Cs. Sci Total Environ 581–582:541–549. https://doi.org/10.1016/j.scitotenv.2016.12.162

    Article  CAS  PubMed  Google Scholar 

  12. Alewell C, Pitois A, Meusburger K, Ketterer M, Mabit L (2017) 239+240Pu from “contaminant” to soil erosion tracer: where do we stand? Earth Sci Rev 172:107–123. https://doi.org/10.1016/j.earscirev.2017.07.009

    Article  CAS  Google Scholar 

  13. Liu ZY, Zheng J, Pan SM, Dong W, Yamada M, Aono T, Guo QJ (2011) Pu and 137 cs in the Yangtze River estuary sediments: distribution and source identification. Environ Sci Technol 45:1805–1811. https://doi.org/10.1021/es1035688

    Article  CAS  PubMed  Google Scholar 

  14. Wu F, Zheng J, Liao H, Yamada M (2010) Vertical Distributions of Plutonium and 137 cs in lacustrine sediments in Northwestern China: quantifying sediment accumulation rates and source identifications. Environ SciTechno l44:2911–2917. https://doi.org/10.1021/es9029649

    Article  CAS  Google Scholar 

  15. Yamamoto M, Hoshi M, Takada J, Sekerbaev A, Gusev B (1999) Pu isotopes and137Cs in the surrounding areas of the former Soviet Union’s Semipalatinsk nuclear test site. J Radioanal Nucl Chem 242:63–74. https://doi.org/10.1007/BF02345895

    Article  CAS  Google Scholar 

  16. Zhao X, Qiao JX, Hou XL (2020) Plutonium isotopes in Northern Xinjiang, China: Level, distribution, sources and their contributions. Environ Pollut 265:114929. https://doi.org/10.1016/j.envpol.2020.114929

    Article  CAS  PubMed  Google Scholar 

  17. Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and 237Np. Sci Total Environ 237–238:483–500. https://doi.org/10.1016/S0048-9697(99)00160-6

    Article  PubMed  Google Scholar 

  18. Eriksson M, Lindahl P, Roos P, Dahlgaard H, Holm E (2008) U, Pu, and Am Nuclear Signatures of the Thule Hydrogen Bomb debris. Environ Sci Technol 42:4717–4722. https://doi.org/10.1021/es800203f

    Article  CAS  PubMed  Google Scholar 

  19. Warneke T, Croudace IW, Warwick PE, Taylor RN (2002) A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes. Earth Planet Sci Lett 203:1047–1057. https://doi.org/10.1016/S0012-821X(02)00930-5

    Article  CAS  Google Scholar 

  20. Meriläinen J, Huttunen P, Battarbee RW (1983) Paleolimnology: Proceedings of the Third International Symposium on Paleolimnology, held at Joensuu, Finland. Springer Netherlands, Dordrecht

  21. Choppin GR (2006) Actinide speciation in aquatic systems. Mar Chem 99:83–92. https://doi.org/10.1016/j.marchem.2005.03.011

    Article  CAS  Google Scholar 

  22. Harley JH (1980) Plutonium in the Environment-A Review. J Radiat Res 21:83–104. https://doi.org/10.1269/jrr.21.83

    Article  CAS  PubMed  Google Scholar 

  23. Lee MH, Lee CW, Boo BH (1997) Distribution and characteristics of 239,240Pu and 137Cs in the soil of Korea. J Environ Radioact 37:1–16. https://doi.org/10.1016/S0265-931X(96)00080-X

    Article  CAS  Google Scholar 

  24. Wan GJ, Santschi PH, Sturm M, Farrenkothen K, Lueck A, Werth E, Schuler C (1987) Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee. Switz Chem Geol 63:181–196. https://doi.org/10.1016/0009-2541(87)90162-8

    Article  CAS  Google Scholar 

  25. Zhang WC, Hou XL (2019) Level, distribution and sources of plutonium in the coastal areas of China. Chemosphere 230:587–595. https://doi.org/10.1016/j.chemosphere.2019.05.094

    Article  CAS  PubMed  Google Scholar 

  26. Zhao X, Hou XL, Huang Z, Liu H, Huang J (2022) Plutonium isotopes in the Qinghai-Tibet Plateau: sources, distribution, and their environmental behaviors. Environ Pollut 306:119401. https://doi.org/10.1016/j.envpol.2022.119401

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Qiao J, Hou X, Pan S (2013) Plutonium in soils from Northeast China and its potential application for evaluation of soil erosion. Sci Rep 3:3506. https://doi.org/10.1038/srep03506

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang WC, Hou XL, Zhang HT, Wang YY, Dang HJ, Xing S, Chen N (2021) Level, distribution and sources of plutonium in the northeast and north China. Environ Pollut 289:117967. https://doi.org/10.1016/j.envpol.2021.117967

    Article  CAS  PubMed  Google Scholar 

  29. Bu WT, Ni YY, Guo QJ, Zheng J, Uchida S (2015) Pu isotopes in soils collected downwind from Lop nor: regional fallout vs. global fallout. Sci Rep 5:12262. https://doi.org/10.1038/srep12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wei J, Zhou J, Tian JL, He XB, Tang KL (2006) Decoupling soil erosion and human activities on the chinese Loess Plateau in the 20th century. CATENA 68:10–15. https://doi.org/10.1016/j.catena.2006.04.011

    Article  Google Scholar 

  31. Zhao G, Mu X, Wen Z, Wang F, Gao P (2013) Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Develop 24:499–510. https://doi.org/10.1002/ldr.2246

    Article  Google Scholar 

  32. Lü YH, Fu BJ, Feng XM, Zeng Y, Liu Y, Chang RY, Sun Ge, Wu BF (2012) A policy-driven large scale ecological restoration: quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 7:e31782. https://doi.org/10.1371/journal.pone.0031782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang WC, Xing S, Hou XL (2019) Evaluation of soil erosion and ecological rehabilitation in Loess Plateau region in Northwest China using plutonium isotopes. Soil Tillage Res 191:162–170. https://doi.org/10.1016/j.still.2019.04.004

    Article  Google Scholar 

  34. Cao L, Zhou Z, Wang N, Wang Z (2019) Vertical distribution and migration of plutonium in the Loess Plateau, North Shaanxi, China. J Radioanal Nucl Chem 322:649–654. https://doi.org/10.1007/s10967-019-06744-x

    Article  CAS  Google Scholar 

  35. Zhang J, Yang MY, Deng XX, Zhang L, Zhang FB, Zhou WY (2018) Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the chinese Loess Plateau. Sci Total Environ 615:240–252. https://doi.org/10.1016/j.scitotenv.2017.09.238

    Article  CAS  PubMed  Google Scholar 

  36. Ming GD, Zhou WJ, Wang H, Shu PX, Cheng P, Liu TB, Zhou J (2021) Grain size variation in two lakes from margin of asian summer Monsoon and its paleoclimate implications. Palaeogeogr Palaeoclimatol Palaeoecol 567:110295. https://doi.org/10.1016/j.palaeo.2021.110295

    Article  Google Scholar 

  37. Zhang KX, Pan SM, Xu YH, Cao LG, Hao YP, Wu MM, Xu W, Shan R (2016) Using 239+240Pu atmospheric deposition and a simplified mass-balance model to re-estimate the soil erosion rate: a case study of Liaodong Bay in China. J Radioanal Nucl Chem 307:599–604. https://doi.org/10.1007/s10967-015-4208-0

    Article  CAS  Google Scholar 

  38. Raab G, Scarciglia F, Norton K, Dahms D, Brandová D, de Castro Portes R, Christl M, Ketterer ME, Ruppli A, Egli M (2018) Denudation variability of the Sila Massif upland (Italy) from decades to millennia using 10Be and 239+240Pu. Land Degrad Develop 29:3736–3752. https://doi.org/10.1002/ldr.3120

    Article  Google Scholar 

  39. Lee MH, Lee CW, Hong KH, Choi YH, Boo BH (1996) Depth distribution of 239,240pu and 137Cs in soils of South Korea. J Radioanal Nucl Chem 204:135–144. https://doi.org/10.1007/bf02060874

    Article  CAS  Google Scholar 

  40. Portes R, Dahms D, Brandová D, Raab G, Christl M, Kühn P, Ketterer M, Egli M (2018) Evolution of soil erosion rates in alpine soils of the Central Rocky Mountains using fallout Pu and δ13C. Earth Planet Sci Lett 496:257–269. https://doi.org/10.1016/j.epsl.2018.06.002

    Article  CAS  Google Scholar 

  41. Ni Y, Wang ZT, Guo QJ, Zheng J, Li SX, Lin JX, Tan ZY, Huang WN (2018) Distinctive distributions and migrations of 239+240Pu and 241Am in Chinese forest, grassland and desert soils. Chemosphere 212:1002–1009. https://doi.org/10.1016/j.chemosphere.2018.09.021

    Article  CAS  PubMed  Google Scholar 

  42. Xu YH, Qiao JX, Pan SM, Hou XL, Roos P, Cao LG (2015) Plutonium as a tracer for soil erosion assessment in northeast China. Sci Total Environ 511:176–185. https://doi.org/10.1016/j.scitotenv.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Li Z, Liu P, Yao W (2005) Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the wind-water Erosion Crisscross Region on Loess Plateau of China. Appl Radiat Isot 62(1):109–113

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell PI, Sanchez-Cabeza JA, Ryan TP et al (1990) Preliminary estimates of cumulative caesium and plutonium deposition in the irish terrestrial environment. J Radioanal Nucl Chem 138:241–256. https://doi.org/10.1007/BF02039849

    Article  CAS  Google Scholar 

  45. Liu X, Jia G, Yu X (2021) Effects of the undecomposed layer and semi-decomposed layer of Quercus variabilis litter on the soil erosion process and the eroded sediment particle size distribution. Hydrol Process 35(5):e14195. https://doi.org/10.1002/hyp.14195

    Article  Google Scholar 

  46. Wang L, Shi ZH (2015) Size selectivity of eroded sediment associated with soil texture on steep slopes. Soil Sci Soc Am J 79:917–929. https://doi.org/10.2136/sssaj2014.10.0415

    Article  CAS  Google Scholar 

  47. Sun W, Shao Q, Liu J (2013) Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J Geogr Sci 23:1091–1106. https://doi.org/10.1007/s11442-013-1065-z

    Article  Google Scholar 

  48. Zheng FL (2006) Effect of Vegetation Changes on Soil Erosion on the Loess Plateau. Pedosphere 16:420–427

    Article  Google Scholar 

  49. Gao Z, Mu X (2004) Spatio-temporal change of Land Use / Coverage in Loess wind-water Erosion Crisscross Region——Take Liudaogou Watershed as example (in chinese). J Soil Water Conserv 18:146–150

    Google Scholar 

  50. Liu L, Liu XH (2010) Sensitivity analysis of Soil Erosion in the Northern Loess Plateau. Procedia Environ Sci 2:134–148. https://doi.org/10.1016/j.proenv.2010.10.017

    Article  Google Scholar 

  51. Wang B, Tang K, Zhang K, Zhang P (1993) Types and intensity of soil erosion and its temporal and spacial distribution in Liudaogou Watershed Shenmu County (in chinese). Memoir of NISWC. Acad Sinica Ministry Water Resour 18:57–66

    Google Scholar 

  52. Wang Y (2017) Using the sediment deposits behind a check dam to interpret the evolution of erosion characteristics in a small catchment of the wind-water erosion crisscross region (in chinese). Northwest A&F University

  53. Ministry of Water Resources of PR China (2008) Standards for classification and gradation of soil erosion (SL190–2007) (in Chinese). pp.1–20

  54. Cai Q (2001) Soil erosion and management on the Loess Plateau. J Geogr Sci 11:53–70. https://doi.org/10.1007/BF02837376

    Article  Google Scholar 

  55. Fang H, Sun L, Tang Z (2015) Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils. Hydrol Process 29:2649–2658. https://doi.org/10.1002/hyp.10392

    Article  Google Scholar 

  56. Wang G, Ye W, Lv Y (2019) Loess geoheritage and geohazard protective measures at Luochuan Loess National Geopark in NW China. Geoheritage 11:1089–1100. https://doi.org/10.1007/s12371-019-00354-5

    Article  Google Scholar 

  57. Hessel R, Van Asch T (2003) Modelling gully erosion for a small catchment on the chinese Loess Plateau. CATENA 54:131–146. https://doi.org/10.1016/S0341-8162(03)00061-4

    Article  Google Scholar 

  58. Wei X, Shao M (2007) The distribution of soil nutrients on sloping land in the gully region watershed of the Loess Plateau (in chinese). Acta Ecol Sin 27:0603–0612. https://doi.org/10.3321/j.issn:1000-0933.2007.02.023

    Article  CAS  Google Scholar 

  59. Lacombe G, Valentin C, Sounyafong P, De Rouw A, Soulileuth B, Silvera N, Pierret A, Sengtaheuanghoung O, Ribolzi O (2018) Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. Sci Total Environ 616–617:1330–1338. https://doi.org/10.1016/j.scitotenv.2017.10.185

    Article  CAS  PubMed  Google Scholar 

  60. Li FR, Kang LF, Zhang H, Zhao LY, Shirato Y, Taniyama I (2005) Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China. J Arid Environ 62:567–585. https://doi.org/10.1016/j.jaridenv.2005.01.014

    Article  Google Scholar 

  61. Wolfe SA, Nickling WG (1993) The protective role of sparse vegetation in wind erosion. Prog Phys Geogr 17:50–68. https://doi.org/10.1177/030913339301700104

    Article  Google Scholar 

  62. Amézketa E (1999) Soil Aggregate Stability: a review. J Agric Sustain 14:83–151. https://doi.org/10.1300/J064v14n02_08

    Article  Google Scholar 

  63. Hudek C, Sturrock CJ, Atkinson BS, Stanchi S, Freppaz M (2017) Root morphology and biomechanical characteristics of high-altitude alpine plant species and their potential application in soil stabilization. Ecol Eng 109:228–239. https://doi.org/10.1016/j.ecoleng.2017.05.048

    Article  Google Scholar 

  64. Musso A, Ketterer ME, Greinwald K, Geitner C, Egli M (2020) Rapid decrease of soil erosion rates with soil formation and vegetation development in periglacial areas. Earth Surf Process Landforms 45:2824–2839. https://doi.org/10.1002/esp.4932

    Article  Google Scholar 

  65. Pintaldi E, D’Amico ME, Stanchi S, Catoni M, Freppaz M, Bonifacio E (2018) Humus forms affect soil susceptibility to water erosion in the Western Italian Alps. Appl Soil Ecol 123:478–483. https://doi.org/10.1016/j.apsoil.2017.04.007

    Article  Google Scholar 

  66. Hou J, Zhu HX, Fu BJ, Lu YH, Zhou J (2020) Functional traits explain seasonal variation effects of plant communities on soil erosion in semiarid grasslands in the Loess Plateau of China. CATENA 194:104743. https://doi.org/10.1016/j.catena.2020.104743

    Article  Google Scholar 

  67. Burity HA, Ta TC, Faris MA, Coulman BE (1989) Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 114:249–255. https://doi.org/10.1007/BF02220805

    Article  Google Scholar 

  68. Zhang YX, Li XB, Cheng YH (2003) Overview of field and multi-scale remote sensing measurement approaches to grassland vegetation coverage (in chinese). Adv in Earth Sci 18:85–93

    Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese Academy of Sciences (No. XDB40020100, 132B61KYSB20180003); National Natural Science Foundation of China Grant (No. 11875261, 41991252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hou, X. Effect of land use and vegetation coverage on level and distribution of plutonium isotopes in the northern Loess Plateau, China. J Radioanal Nucl Chem 332, 989–998 (2023). https://doi.org/10.1007/s10967-022-08675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08675-6

Keywords

Navigation