Skip to main content
Log in

Uranium releasing behavior from a uranium waste rock heap in southern China: indication from sink

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The waste rock heap is a kind of potential uranium (U) pollution source in U mining and metallurgy areas. In this study, we discussed the distribution characteristics of U in the soil (sludge) around a waste rock heap of a granite-type U mine in southern China, and the aim was to indicate U releasing behavior from the pollution source from the perspective of the sink. This work proves that U carried by colloidal solution can be transported for a longer distance. Thus, in the follow-up regulation engineering for U waste rock heap to inhibit U from entering the environment, it should be concerned on not only the diffusion of U in the form of debris, but especially the migration of U as colloidal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Şimşek S, Şenol ZM, Ulusoy HI (2017) Synthesis and characterization of a composite polymeric material including chelating agent for adsorption of Uranyl ions. J Hazard Mater 338:437–446. https://doi.org/10.1016/j.jhazmat.2017.05.059

    Article  CAS  PubMed  Google Scholar 

  2. Şenol ZM, Şimşek S, Ulusoy HI, Özer A (2020) Synthesis and characterization of a polyacrylamide-dolomite based new composite material for efcient removal of uranyl ions. J Radioanal Nucl Chem 324:317–330. https://doi.org/10.1007/s10967-020-07047-2

    Article  CAS  Google Scholar 

  3. Şenol ZM, Kaya S, Şimşek S, Katin KP, Özer A, Marzouki R (2022) Synthesis and characterization of chitosan-vermiculite-lignin ternary composite as an adsorbent for effective removal of uranyl ions from aqueous solution: Experimental and theoretical analyses. Int J Biol Macromolecules 209:1234–1247. https://doi.org/10.1016/j.ijbiomac.2022.04.128.

  4. Shang DL, Geissler B, Mew M, Satalkina L, Zenk L, Tulsidas H, Barker L, El-Yahyaoui A, Hussein A, Taha M, Zheng YH, Wang ML, Yao Y, Liu XD, Deng HD, Zhong J, Li ZY, Steiner G, Bertau M, Nils Haneklaus N (2021) Unconventional uranium in China’s phosphate rock: review and outlook. Renew Sustain Energy Rev 140:110740. https://doi.org/10.1016/j.rser.2021.110740

    Article  CAS  Google Scholar 

  5. Pan YJ, Li YC, Xue JX, Chen ZQ (2009) Status and countermeasures for decommissioning of uranium mine and mill facilities in China. Radiat Prot 29(3):167–171. (In Chinese)

    Google Scholar 

  6. Zhang XL, Xu LC, Wei GZ, Gao J, Wang EQ (2010) Minimization of radioactive solid wastes from uranium mining and metallurgy. Uranium Min Metall 29(4):204–209. (In Chinese)

    Google Scholar 

  7. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy and environmental impact. Elements 2(6):335–341. https://doi.org/10.2113/gselements.2.6.335

    Article  CAS  Google Scholar 

  8. Pan YJ (1997) Status quo of environment treatment and countermeasures ought to be taken during installations decommission of uranium mining and metallurgy in China. Uranium Min Metall 16(4): 227–236. (In Chinese)

    Google Scholar 

  9. Xu LC, Zhang Z, Zhang GF, Liu M (2012) Close-cut of open pit and waste rock piles of a U mine in Guangxi province of China. U Min Metall 31(3): 158–161. (In Chinese)

    Google Scholar 

  10. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with U. J Hazard Mater 163:475–510.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell KM, Gallegos TJ, Landa ER (2015) Biogeochemical aspects of U mineralization, mining, milling, and remediation. Appl Geochem 57:206–235. https://doi.org/10.1016/j.jhazmat.2008.07.103

    Article  CAS  Google Scholar 

  12. Wang ZL, Liu ZR, Yu JH, Wang Y, Zhou LM (2021) Release behavior U and thorium in soil from a decommissioned U tailings in Jiangxi Province, China. J Radioanal Nucl Chem 330:833–843. https://doi.org/10.1007/S10967-021-08030-1

    Article  CAS  Google Scholar 

  13. Wang WH, Luo XG, Wang Z, Zeng Y, Wu FQ, Li ZX (2018) Heavy metal and metalloid contamination assessments of soil around an abandoned U tailings pond and the contaminations’ spatial distribution and variability. Int J Environ Res Public Health 15(11):2401–2401. https://doi.org/10.3390/ijerph15112401

    Article  CAS  PubMed Central  Google Scholar 

  14. Liu YY, Zhou WB, Gao B, Zheng ZH, Chen GX, Wei QL, He Y (2021) Determination of radionuclide concentration and radiological hazard in soil and water near the U tailings reservoir in China. Environm Pollut Bioavailability 33(1):174–183. https://doi.org/10.1080/26395940.2021.1951123

    Article  CAS  Google Scholar 

  15. Fu MT, Ao JX, Ma L, Kong DX, Qi SM, Zhang P, Xu G, Wu MH, Ma HJ (2022) U removal from waste water of the tailings with functional recycled plastic membrane. Sep Purif Technol 287:120572. https://doi.org/10.1016/J.SEPPUR.2022.120572

    Article  CAS  Google Scholar 

  16. Liu B, Peng TJ, Sun HJ, Yue HJ (2017) Release behavior of U in U mill tailings under environmental conditions. J Environ Radioact 171:160–168. https://doi.org/10.1016/j.jenvrad.2017.02.016

    Article  CAS  PubMed  Google Scholar 

  17. Yin ML, Sun J, Chen YH, Wang J, Shang JY, Belshaw N, Shen CC, Liu J, Li HS, Linghu WS, Xiao TF, Dong XJ, Song G, Xiao EZ, Chen DY (2018) Mechanism of U release from U mill tailings under long-term exposure to simulated acid rain: geochemical evidence and environmental implication. Environ Pollut 244:174–181. https://doi.org/10.1016/j.envpol.2018.10.018

    Article  CAS  PubMed  Google Scholar 

  18. Wang WF, Chen GX, Zeng WQ, Li W (2019) Effect of rainfall with different acidity on release and migration of U and thorium from U tailings. Nonferrous Met (extractive metallurgy) (10): 46–49,66. (In Chinese)

  19. Pei JJ, Hu N, Zhang H, Dai ZR, Ding DX, Yu ZH (2019) An analysis of influencing factors on the release of different species of U from U tailings and their correlation. Environ Sci 39(7):3073–3080. (In Chinese)

    CAS  Google Scholar 

  20. Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857. https://doi.org/10.1039/b207574c

    Article  CAS  PubMed  Google Scholar 

  21. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. https://doi.org/10.1021/ac50043a017

    Article  CAS  Google Scholar 

  22. Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis I. Stand Trends Anal Chem 17(5):289–298.

    Article  CAS  Google Scholar 

  23. Martínez-Aguirre A, Garcia-León M, Ivanovich M (1995) U and Th speciation in river sediments. Sci Total Environ 173(174):203–209. https://doi.org/10.1016/0048-9697(95)04759-X

    Article  Google Scholar 

  24. Guo PR, Duan TC, Song XJ, Chen HT (2007) Evaluation of a sequential extraction for the speciation of thorium in soils from Baotou area, Inner Mongolia. Talanta 71:778–783. https://doi.org/10.1016/j.talanta.2006.05.038

    Article  CAS  PubMed  Google Scholar 

  25. Crespo MT, Villar LPD, Jiménez A, Pelayo M, Quejido A, Sánchez M (1996) U isotopic distribution in the mineral phases of granitic fracture fillings by a sequential extraction procedure. Appl Radiat Isot 47:927–931. https://doi.org/10.1016/S0969-8043(96)00089-9

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Feng ZG, Ma Q, Chen R, Wang XL, Duan XZ, Han SL (2015) Pollution characteristics and environmental availability of U in the soils around a U waste rock pile in Guangdong Province, China. Ecol Environ Sci 24(1):156–162. (In Chinese)

    CAS  Google Scholar 

  27. Wu J, Li J, Yuan Z (1991) Determination of trace U by laser U analyser. Nucl Electron Detec Technol 2:127–128. (In Chinese)

    Google Scholar 

  28. Fralick PW, Kronberg BI (1997) Geochemical discrimination of clastic sedimentary rock sources. Sed Geol 113:111–124. https://doi.org/10.1016/S0037-0738(97)00049-3

    Article  CAS  Google Scholar 

  29. Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci Rev 95(1/2):1–52. https://doi.org/10.1016/j.earscirev.2009.03.004

    Article  CAS  Google Scholar 

  30. Babechuk MG, Widdowson M, Murphy M, Kamber BS (2015) A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chem Geol 396:25–41. https://doi.org/10.1016/j.chemgeo.2014.12.017

    Article  CAS  Google Scholar 

  31. Mahmoodi M, Khormali F, Amini A, Ayoubi S (2016) Weathering and soils formation on different parent materials in Golestan Province, Noethern Iran. J Mt Sci 13(5):870–881. https://doi.org/10.1007/s11629-015-3567-x

    Article  Google Scholar 

  32. China Environmental Monitoring Station (1990) Background values of soil elements in China. China Environmental Science Press, Beijing. (In Chinese)

    Google Scholar 

  33. Huang Z, Zhang W, Chen J, Liu R, He Z (1996) Red weathering crust in southern China. Ocean Press, Beijing. (In Chinese)

    Google Scholar 

  34. Qu C, Ren W, Li X, Cai P, Chen W, Huang Q (2022) Revisit soil organic matter. Chin Sci Bull 67(10):913–923. (In Chinese)

    Google Scholar 

  35. Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) Som genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. https://doi.org/10.1007/s10533-011-9658-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Sciences Funding Project of Hunan Province, China (Grant No. 2020JJ4524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Major and some trace element contents of samples from the U waste rock heap and its surrounding soil (sludge) profiles. Major elements were expressed in oxides, and major and trace element values were in weight percent (%) and in mg kg−1, respectively.

Samplea

Depth (cm)

SiO2

Al2O3

TFe2O3b

CaO

MgO

K2O

Na2O

TiO2

P2O5

MnO

U

Zr

Hf

WR-a1

 

78.88

11.24

2.15

0.81

0.51

4.19

1.79

0.15

0.09

0.12

20.90

103

3.31

WR-a2

 

75.71

13.14

0.79

0.39

0.05

5.82

3.24

0.01

0.081

0.12

21.60

14.5

0.81

WR-a3

 

67.11

16.53

1.08

0.55

0.21

4.55

7.80

0.04

0.084

0.074

134

79

4.91

WR-a4

 

74.2

10.83

1.93

2.5

0.58

3.00

4.25

0.14

0.053

0.084

49.70

84

3.43

WR-a5

 

75.75

11.71

3.33

1.03

0.49

3.93

1.49

0.38

0.069

0.19

68.70

95.5

3.15

WR-a6

 

70.4

12.45

4.32

1.58

1.48

3.75

1.12

0.42

0.14

0.13

91.30

84.2

2.69

WR-a7

 

72.46

12.35

2.17

2.09

0.22

4.74

2.91

0.04

0.11

0.15

55.80

96.5

1.78

WR-a8

 

68.08

13.46

1.95

1.61

0.68

4.68

2.02

0.03

0.13

0.17

84.70

105.6

1.88

WR-ave

 

72.82

12.71

2.22

1.32

0.53

4.33

3.08

0.15

0.095

0.13

65.84

  

WR-SD

 

4.08

1.78

1.14

0.75

0.44

0.83

2.17

0.16

0.03

0.04

37.79

  

B1-T5

0 ~ 5

66.62

19.06

1.58

0.09

0.44

4.10

0.28

0.22

0.092

0.052

8.72

94.2

3.73

B1-T4

5 ~ 15

68.06

18.85

1.64

0.09

0.44

4.06

0.28

0.22

0.067

0.049

8.35

106

4.13

B1-T3

15 ~ 25

69.12

18.7

1.54

0.08

0.44

4.3

0.28

0.20

0.059

0.046

7.41

74.4

3.09

B1-T2

25 ~ 35

68.11

19.2

1.68

0.08

0.46

4.12

0.27

0.22

0.056

0.049

6.99

89.2

3.40

B1-T1

35 ~ 40

67.71

19.39

1.69

0.08

0.46

4.16

0.28

0.23

0.058

0.058

9.34

104

3.92

B1-ave

 

67.92

19.04

1.63

0.084

0.45

4.15

0.28

0.22

0.066

0.051

8.16

  

B1-SD

 

0.90

0.27

0.065

0.005

0.011

0.092

0.004

0.011

0.015

0.005

0.96

  

B2-T5

0 ~ 5

69.27

18.44

1.59

0.09

0.43

4.13

0.29

0.22

0.063

0.057

7.46

95.8

3.51

B2-T4

5 ~ 15

68.75

18.74

1.64

0.08

0.44

4.14

0.28

0.23

0.061

0.059

7.66

115

4.12

B2-T3

15 ~ 25

69.43

18.55

1.58

0.08

0.43

4.13

0.28

0.21

0.052

0.058

8.15

89.4

3.45

B2-T2

25 ~ 35

69.87

18.61

1.61

0.08

0.44

4.16

0.27

0.22

0.049

0.059

6.73

91

3.55

B2-T1

35 ~ 45

70.71

18.28

1.49

0.08

0.42

4.17

0.27

0.19

0.045

0.064

6.68

78.4

3.56

B2-ave

 

69.61

18.52

1.58

0.082

0.43

4.15

0.28

0.21

0.054

0.059

7.34

  

B2-SD

 

0.74

0.17

0.056

0.004

0.008

0.018

0.008

0.015

0.008

0.003

0.63

  

W1-T5

0 ~ 5

68.69

18.37

1.34

0.09

0.46

4.67

0.20

0.089

0.09

0.052

6010

675

14.50

W1-T4

5 ~ 10

66.15

17.97

2.15

0.16

0.93

4.24

0.27

0.14

0.13

0.091

7420

1120

23

W1-T3

10 ~ 15

61.01

19.58

3.6

0.27

1.69

4.37

0.32

0.20

0.13

0.15

7260

1040

23

W1-T2

15 ~ 20

66.96

19.08

1.67

0.22

0.76

4.76

0.32

0.13

0.077

0.078

2730

476

10.60

W1-T1

20 ~ 25

71.27

17.89

1.26

0.29

0.55

4.85

0.35

0.10

0.052

0.059

820

142

4.24

W1-ave

 

66.82

18.58

2.00

0.21

0.88

4.58

0.29

0.13

0.096

0.086

4848

  

W1-SD

 

3.79

0.73

0.96

0.082

0.49

0.26

0.059

0.043

0.034

0.039

2937

  

W2-T5

0 ~ 10

72.58

14.26

1.70

1.27

0.93

4.58

1.13

0.22

0.087

0.087

80.60

77.6

3.03

W2-T4

10 ~ 20

74.76

13.69

1.69

1.02

0.81

4.52

0.94

0.19

0.076

0.09

71.60

59.6

2.35

W2-T3

20 ~ 25

73.27

14.70

1.98

0.67

0.96

4.69

0.73

0.23

0.072

0.097

99.20

84.8

3.20

W2-T2

25 ~ 30

73.94

14.57

1.86

0.61

0.89

4.64

0.71

0.21

0.061

0.10

74.80

66.7

2.52

W2-T1

30 ~ 35

73.73

15.89

1.40

0.41

0.53

5.11

0.79

0.12

0.043

0.091

56.10

71.3

3.32

W2-ave

 

73.66

14.62

1.73

0.80

0.82

4.71

0.86

0.19

0.068

0.093

76.46

  

W2-SD

 

0.81

0.81

0.22

0.34

0.17

0.23

0.18

0.044

0.017

0.005

15.61

  

W3-T5

0 ~ 10

70.88

17.89

1.10

0.12

0.40

4.87

0.53

0.11

0.06

0.068

15.60

41.5

2.02

W3-T4

10 ~ 15

72.02

17.39

1.09

0.13

0.39

4.83

0.58

0.11

0.057

0.06

19

67.8

3.01

W3-T3

15 ~ 20

72.53

17.35

1.15

0.14

0.45

4.82

0.54

0.11

0.053

0.059

27.80

51.4

2.87

W3-T2

20 ~ 25

73.71

16.56

1.18

0.17

0.46

4.71

0.43

0.11

0.05

0.067

41.10

95.6

3.81

W3-T1

25 ~ 30

71.61

17.54

1.25

0.21

0.56

4.88

0.44

0.12

0.053

0.068

49.50

52

2.28

W3-ave

 

72.15

17.35

1.15

0.15

0.45

4.82

0.5

0.11

0.055

0.064

30.60

  

W3-SD

 

1.06

0.49

0.065

0.036

0.068

0.068

0.066

0.004

0.004

0.005

14.45

  

W4-T5

0 ~ 5

69.51

18.17

1.53

0.26

0.51

5.06

0.32

0.16

0.067

0.06

43.20

85.1

3.22

W4-T4

5 ~ 10

72.57

17.13

1.38

0.11

0.34

4.73

0.21

0.14

0.049

0.046

13.80

77.3

2.86

W4-T3

10 ~ 15

72.83

17.19

1.43

0.09

0.32

4.91

0.20

0.13

0.045

0.047

9.33

105

4.15

W4-T2

15 ~ 20

69.07

18.95

1.49

0.09

0.39

4.74

0.19

0.15

0.052

0.041

10.60

145

6.02

W4-T1

20 ~ 25

71.8

17.65

1.52

0.11

0.40

4.57

0.19

0.16

0.051

0.044

29.10

81.7

3.15

W4-ave

 

71.16

17.82

1.47

0.13

0.39

4.80

0.22

0.15

0.053

0.048

21.21

  

W4-SD

 

1.75

0.76

0.064

0.072

0.074

0.19

0.055

0.013

0.008

0.007

14.62

  

W5-T6

0 ~ 5

63.16

19.49

2.28

0.51

1.23

4.90

0.83

0.25

0.097

0.11

666

97.4

3.82

W5-T5

5 ~ 10

63.03

19.48

2.49

0.55

1.50

4.91

0.74

0.28

0.10

0.13

596

115

4.54

W5-T4

10 ~ 15

62.67

19.78

2.62

0.57

1.54

4.84

0.66

0.29

0.098

0.11

563

108

4.03

W5-T3

15 ~ 20

62.54

19.83

2.45

0.57

1.48

4.86

0.69

0.28

0.10

0.11

626

112

5.36

W5-T2

20 ~ 25

62.69

19.97

2.38

0.57

1.47

4.82

0.59

0.27

0.10

0.12

538

82.7

3.48

W5-T1

25 ~ 30

62.52

19.74

2.46

0.56

1.51

4.86

0.68

0.29

0.098

0.081

596

112

4.15

W5-ave

 

62.77

19.72

2.45

0.56

1.46

4.87

0.70

0.28

0.099

0.11

598

  

W5-SD

 

0.27

0.19

0.11

0.023

0.11

0.034

0.081

0.015

0.001

0.016

45.25

  
  1. The superscript “a” indicated the meanings of sample numbers were as follows: WR, B1 ~ B2, W1 ~ W4 and W5 stood for the U waste rock heap, its upstream soil profiles, downstream soil profiles and sludge profile, respectively; a1 ~ a8 and T1 ~ Tn referred to the samples; ave and SD referred to elemental content average value and standard deviation (± 1σ) among the samples, respectively. The superscript “b” indicated TFe2O3 represented the total iron content of bulk rock in Fe2O3

Appendix B

Contents of U in various speciation of the samples collected from the U waste rock heap and its surrounding soil (sludge) profiles.

Samplea

F1

F2

F3

F4

F5

F6

CVb (%)

Samplea

F1

F2

F3

F4

F5

F6

CVb (%)

(mg kg−1)

(mg kg−1)

WR-a1

2.84

6.12

6.79

1.65

2.06

−6.89

W2-T1

0.12

42.74

14.92

3.75

0.19

2.74

14.90

WR-a2

2.19

10.67

5.99

1.81

0.72

−1.02

W2-ave

5.62

44.2

23

4.62

0.27

4.71

 

WR-a3

11.82

35.52

65.42

10.34

0.34

5.77

−3.57

W2-SD

4.28

9.56

5.90

0.78

0.08

2.21

 

WR-a4

4.26

20.27

14.17

2.70

5.23

−6.18

W3-T5

7.94

3.28

0.92

2.55

−5.83

WR-a5

0.45

31.40

17.20

9.35

0.30

12.06

3.00

W3-T4

10.94

4.11

0.99

0.11

2.67

−0.95

WR-a6

0.63

26.62

31.18

10.09

0.69

20.41

−1.84

W3-T3

16.42

5.52

1.46

0.18

1.64

−9.28

WR-ave

3.70

21.77

23.46

5.99

0.22

7.71

 

W3-T2

29.18

10.64

2.00

0.24

3.19

10.10

WR-SD

4.23

11.63

22.49

4.34

0.28

7.36

 

W3-T1

35.29

13.18

2.30

0.25

3.75

10.65

B2-T5

2.14

2.04

0.90

1.65

−9.79

W3-ave

19.95

7.35

1.53

0.16

2.76

 

B2-T4

1.90

2.88

0.39

1.65

−10.97

W3-SD

11.82

4.34

0.61

0.10

0.79

 

B2-T3

4.93

2.43

0.18

1.40

9.69

W4-T5

1.05

24.37

15.84

1.15

1.04

2.98

7.48

B2-T2

2.00

2.01

0.16

1.89

−9.96

W4-T4

0.95

4.37

3.98

1.02

0.95

3.47

6.81

B2-T1

2.05

2.16

0.35

2.35

3.44

W4-T3

0.86

4.08

1.48

0.78

1.15

2.08

11.79

B2-ave

2.60

2.30

0.40

1.79

 

W4-T2

0.36

4.70

2.21

0.57

0.89

2.62

7.08

B2-SD

1.30

0.36

0.30

0.36

 

W4-T1

0.26

8.47

8.26

3.45

1.53

4.47

−9.14

W1-T5

89.47

1643

3914

374

34.30

11.03

0.93

W4-ave

0.70

9.20

6.35

1.39

1.11

3.12

 

W1-T4

354

2935

3617

1059

56.67

19.83

8.38

W4-SD

0.36

8.67

5.92

1.17

0.25

0.91

 

W1-T3

135

2276

3131

494

32.40

21.94

−16.11

W5-T6

0.31

450.24

120.61

10.18

0.63

6.88

−11.58

W1-T2

15.97

1447

833

140

17.97

4.89

−9.93

W5-T5

0.35

413.20

115.20

8.55

0.55

7.66

−8.47

W1-T1

2.24

451

335

73.86

15.71

2.54

7.36

W5-T4

0.26

499.78

118.09

11.61

0.81

9.41

13.67

W1-ave

119

1750

2366

428

31.41

12.05

 

W5-T3

0.23

441.37

95.80

9.00

0.61

7.98

−11.34

W1-SD

142

932

1660

392

16.39

8.68

 

W5-T2

0.25

430.60

94.07

11.59

1.14

8.62

1.54

W2-T5

11.11

32.48

23.39

4.97

0.25

2.98

−6.72

W5-T1

0.51

462.91

119.42

13.02

0.99

10.28

1.87

W2-T4

8.47

39.40

23.36

4.43

0.21

7.11

15.91

W5-ave

0.32

449.68

110.53

10.66

0.79

8.47

 

W2-T3

4.73

57.74

31.50

5.77

0.34

7.09

8.03

W5-SD

0.10

29.83

12.23

1.72

0.24

1.23

 

W2-T2

3.66

48.62

21.82

4.20

0.36

3.63

10.01

        
  1. “—”Indicated the value was below detection limit. The superscript “a” indicated the sample numbers were the same as those listed in Table 1. The superscript “b” indicated CV referred to the relative deviation between the sum of various speciation U contents and the U content of bulk rock listed in Table 1. Data of the profiles B2 and W1 ~ W3 were cited from our published literature [26]

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Li, P., Ma, Q. et al. Uranium releasing behavior from a uranium waste rock heap in southern China: indication from sink. J Radioanal Nucl Chem 331, 4663–4674 (2022). https://doi.org/10.1007/s10967-022-08560-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08560-2

Keywords

Navigation