Skip to main content
Log in

Biosorption behavior and biomineralization mechanism of low concentration uranium (VI) by pseudomonas fluorescens

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The biosorption behavior and biomineralization mechanism of low concentration uranium was investigated in this study. The results showed the obvious effects of ratio of uranium and biomass concentration, contact time, and pH value. Optimum bacterium-uranium ratio(G) is about 20–50, and the optimal pH value is about 4.0–9.0. Biosorption process can be divided into three stages: fast, slow and further biosorption stage. Numerous functional groups on the cell surface such as carboxyl, hydroxyl, amide groups, phosphoric acid group and amino group rapidly adsorbed uranyl ions. Desorption that considered as a self-protective phenomenon, was obvious in the stable adsorption. Scaly shaped uranium crystal which proved to be chernikovite uramphite (NH4)(UO2)PO4·3H2O (PDF #42-0384), was formed on cell surface with long contact time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kahouli S (2011) Re-examining uranium supply and demand: new insights. Energy Policy 39(1):358–376

    Article  CAS  Google Scholar 

  2. Jiang F, Wang Z, Chen G, Liu Y, Luo C (2021) Experimental study of pore characteristics and radon exhalation of uranium tailing solidified bodies in acidic environments. Environ Sci Pollut Res 28:20111–20120

    Article  CAS  Google Scholar 

  3. Huang C, Zhang H, Hu N, Ding DX, Sun J (2018) Remediation of uranium contaminated groundwater by β-glycerophosphate. Zhongguo Huanjing Kexue/China Environ Sci 38(9):3391–3397

    CAS  Google Scholar 

  4. Ying WA, Zl A, Qi L, Jz A, Jl A, Jing YA, Rca C, Pl C, Jwa C (2020) Ultra-high mechanical property and multi-layer porous structure of amidoximation ethylene-acrylic acid copolymer balls for efficient and selective uranium adsorption from radioactive wastewater. Chemosphere 280:130722

    Google Scholar 

  5. Chattanathan SA, Clement TP, Kanel SR, Barnett MO, Chatakondi N (2013) Remediation of uranium-contaminated groundwater by sorption onto hydroxyapatite derived from catfish bones. Water Air Soil Pollut 224(2):1–9

    Article  CAS  Google Scholar 

  6. Liu X, Wei F, Xu C, Liao Y, Jiang J (2015) Characteristics and classification of solid radioactive waste from the front-end of the uranium fuel cycle. Health Phys 109(3):183–186

    Article  CAS  PubMed  Google Scholar 

  7. Jlla C, Zwl B, Xglb C (2020) A metabolomic, transcriptomic profiling, and mineral nutrient metabolism study of the phytotoxicity mechanism of uranium. J Hazard Mater 386(15):121437

    Google Scholar 

  8. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  9. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2019) The improved methods of heavy metals removal by biosorbents: a review. Environ Pollut 258:113777

    Article  PubMed  Google Scholar 

  10. Sánchez-Castro I, Martínez-Rodríguez P, Jroundi F, Solari PL, Merroun ML (2020) High-efficient microbial immobilization of solved U(VI) by the Stenotrophomonas strain Br 8. Water Res 183(15):116110

    Article  PubMed  Google Scholar 

  11. Wang M, Shijun WU, Yang Y, Chen F (2018) Microbial induced carbonate precipitation and its application for immobilization of heavy metals: a review. Res Environ Sci 31(2):206–214

    Google Scholar 

  12. Pabalan RT, Turner DR (1997) Uranium(6+) sorption on montmorillonite: experimental and surface complexation modeling study. Aquat Geochem 2(3):203–226

    Article  Google Scholar 

  13. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64(14):2431–2438

    Article  CAS  Google Scholar 

  14. Hagag MS, Salem F, Zaki SA, Ali AH, Esmaeel SM (2022) Uranium sorption from waste solutions by Talc Phosphogypsum ferri-silicate synthetic new sorbent. Radiochim Acta 110(2):93–106

    Article  CAS  Google Scholar 

  15. Wang Y, Wang J, Li P, Qin H, Fan Q (2021) The adsorption of U(VI) on magnetite, ferrihydrite and goethite. Environ Technol Innov 23:101615

    Article  CAS  Google Scholar 

  16. Smjeanin N, Nuhanovi M, Sulejmanovi J, Grahek E, Odobai A (2022) Study of uranium biosorption process in aqueous solution by red beet peel. J Radioanal Nucl Chem 331:1459–1471

    Article  Google Scholar 

  17. Ruchhoft H (1949) Disposal of radioactive wastes by biological methods. Atomics 444:3690

    Google Scholar 

  18. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  19. Yu S, Wu X, Ye J, Li M, Liu Y (2022) Dual effect of acetic acid efficiently enhances sludge-based biochar to recover uranium from aqueous solution. Front Chem 10:3389

    Article  Google Scholar 

  20. Sukla LB, Pradhan N, Panda S, Mishra BK (2015) [Soil Biology] environmental microbial biotechnology volume 45. Uranium Bioremed Approaches Chall 7:119–132

    Google Scholar 

  21. Xia LS, Wang M, Deng CA, Fu SF (2006) Synergistic aeration biosorption of uranium-containing wastewater by banyan leaves-activated sludge. J Nuclear Radiochem 28(4):231–235

    CAS  Google Scholar 

  22. Bai Y, Zhang J, Feng YJ (2003) Research advances in biosorption of uranium-containing wastewater. Sichuan Environ 22(2):9–14

    CAS  Google Scholar 

  23. Chen F, Tan N, Long W, Yang S, She Z, Lin Y (2014) Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. #ZZF51. J Radioanal Nuclear Chem 299(1):193–201

    Article  CAS  Google Scholar 

  24. Psyrillou AM, Noli F (2021) Investigation of uranium biosorption using tomato peel in raw and modified form. J Radioanal Nucl Chem 330(1):305–314

    Article  CAS  Google Scholar 

  25. Hashemi N, Dabbagh R, Noroozi M, Baradaran S (2020) Optimization of uranium biosorption in solutions by Sargassum boveanumusing RSM method. Techno-Press 9(1):65–84

    Google Scholar 

  26. Shu Y, Li S, Xie J, Guo K, Cheng C, Chen L, Peng G, Xiao F (2021) Mechanism of recombinant bacteria adsorb UO22+ under culture condition. Enzyme Microb Technol 151:109920

    Article  CAS  PubMed  Google Scholar 

  27. Hufton J, Harding J, Smith TJ, Romero-Gonzalez ME (2020) The importance of the bacterial cell wall in uranium (VI) biosorption. Phys Chem Chem Phys 23:1566–1576

    Article  Google Scholar 

  28. Tamilselvan M, Shukla SK, Toleti SR, Kumar M (2020) Kinetic modelling of the uranium biosorption by deinococcus radiodurans biofilm. Chemosphere 269:128722

    Google Scholar 

  29. Yu Q, Yuan Y, Feng L, Sun W, Lin K, Zhang J, Zhang Y, Wang H, Wan N, Qin P (2022) Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. J Hazard Mater 424:127758

    Article  CAS  PubMed  Google Scholar 

  30. Coelho E, Reis TA, Cotrim M, Rizzutto M, Corrêa B (2020) Bioremediation of water contaminated with uranium using Penicillium piscarium. Biotechnol Progress 6:e30322

    Google Scholar 

  31. Kilislioglu B (2003) Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl Radiat Isot 58(2):155–160

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Dumpala R, Chandane A, Bahadur J (2022) Elucidation of the sorbent role in sorption thermodynamics of uranium(VI) on goethite. Environ Sci Process Impacts 24:567–575

    Article  CAS  PubMed  Google Scholar 

  33. Chen F, Lv M, Ye Y, Miao S, Tang X, Liu Y, Liang B, Qin Z, Chen Y, He Z (2022) Insights on uranium removal by ion exchange columns: the deactivation mechanisms, and an overlooked biological pathway. Chem Eng J 434(15):134708

    Article  CAS  Google Scholar 

  34. Jisu L, Jung LS, Sungho K, Jong-Un L, Kwang-Soon S, Hor-Gil H (2021) Layers of uranium phosphate nanorods and nanoplates encrusted on fungus Cladosporium sp. strain F1 hyphae. Microbes Environ 36(4):34776461

    Google Scholar 

  35. Wang T, Zheng X, Wang X, Lu X, Shen Y (2017) Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact 167:92–99

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Wang T, Zheng X, Shen Y, Lu X (2017) Isotherms, thermodynamic and mechanism studies of removal of low concentration uranium (VI) by Aspergillus niger. Water Sci Technol 75(12):2727–2736

    Article  CAS  PubMed  Google Scholar 

  37. Zheng X, Hu P, Yao R, Cheng J, Chang Y, Wu H, Mei H, Sun S, Chen Q, Liu F (2022) Enhancement of uranium(VI) biomineralization by Saccharomyces cerevisiae through addition of inorganic phosphorus. Science 331:2217–2226

    CAS  Google Scholar 

  38. Shen Y, Zheng X, Wang X, Wang T (2018) The biomineralization process of uranium(VI) by Saccharomyces cerevisiae—transformation from amorphous U(VI) to crystalline chernikovite. Appl Microbiol Biotechnol 102:4217–4229

    Article  CAS  PubMed  Google Scholar 

  39. Merroun ML, Raff J, Rossberg A, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71(9):5532–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Macaskie L, Empson R, Cheetham A, Grey C, Skarnulis A (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Science 257(5071):782–784

    Article  CAS  PubMed  Google Scholar 

  41. Macaskie LE (2010) An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J Chem Technol Biotechnol Biotechnol 49(4):357–379

    Article  Google Scholar 

  42. Fernando M, González-MuOz M, Thomas R, Romero-González M, Arias JM, Merroun ML, Jaak JP (2014) Biosorption and biomineralization of U(VI) by the marine bacterium idiomarina loihiensis MAH1: effect of background electrolyte and pH. PLoS ONE 9(3):91305

    Article  Google Scholar 

  43. Liang X, Csetenyi L, Ga Dd GM (2016) Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl Microbiol Biotechnol 100(11):5141–5151

    Article  CAS  PubMed  Google Scholar 

  44. Yong P, Macaskie LE (2010) Enhancement of uranium bioaccumulation by a Citrobacter sp. via enzymically-mediated growth of polycrystalline NH4UO2PO4. J Chem Technol Biotechnol 63(2):101–108

    Article  Google Scholar 

  45. Acharya C (2015) Uranium bioremediation: approaches and challenges. Springer Int Publ 45:119–132

    CAS  Google Scholar 

  46. Shen Y, Zheng X, Wang XT (2018) The biomineralization process of uranium(VI) by Saccharomyces cerevisiae-transformation from amorphous U(VI) to crystalline chernikovite. Appl Microbiol Biotechnol 102(9):4217–4229

    Article  CAS  PubMed  Google Scholar 

  47. Lu X, Zhou XJ, Wang TS (2013) Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: batch, HRTEM, and FTIR studies. J Hazard Mater 262(15):297–303

    Article  CAS  PubMed  Google Scholar 

  48. Zheng XY, Lu X, Wang XY, Shen YH, Wang TS (2017) Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite. Chemosphere Environ Toxicol Risk Assess 175:161–169

    CAS  Google Scholar 

  49. R. Livens JCRJRLb (2007) Microbial interactions with actinides and long-lived fission products. C R Chim 10(10–11):1067–1077

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Henan Province (Grant No. 202300410281), National Scientific Research Project Cultivation Fund of Huanghuai University (No. XKPY-202006), China Postdoctoral Science Foundation (Grant No.2021M700685), The Key Scientific Research Projects of Colleges and Universities in Henan Province (Grant 22A510016), Henan Provincial Science and Technology Research Project (222102310286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hu, P., Yao, R. et al. Biosorption behavior and biomineralization mechanism of low concentration uranium (VI) by pseudomonas fluorescens. J Radioanal Nucl Chem 331, 4675–4684 (2022). https://doi.org/10.1007/s10967-022-08551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08551-3

Keywords

Navigation