Skip to main content
Log in

Energy broadening of neutron depth profiles by thin polyamide films

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A protective covering is often required for neutron depth profiling (NDP) measurements of sensitive materials (e.g., Li-ion batteries). Addition of this layer can increase NDP profile energy broadening and depth assignment uncertainty. This study evaluates the magnitude of these effects when polyimide films of variable thicknesses are placed over Li-rich solids. Key results include a modeled increase in cold neutron beam attenuation with increased film thickness, a methodology for estimating profile energy broadening using a sigmoidal function, and, when using a thick layer, that the broadening will add uncertainity to the zero-depth position and depth scale assignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lamaze GP et al (2003) Cold neutron depth profiling of lithium-ion battery materials. J Power Sour 119:680–685

    Article  Google Scholar 

  2. Nagpure SC et al (2011) Neutron depth profiling technique for studying aging in Li-ion batteries. Electrochim Acta 56(13):4735–4743

    Article  CAS  Google Scholar 

  3. Wang C et al (2017) In situ neutron depth profiling of lithium metal–garnet interfaces for solid state batteries. J Am Chem Soc 139(40):14257–14264

    Article  CAS  Google Scholar 

  4. Tomandl I et al (2020) Analysis of Li distribution in ultrathin all-solid-state Li-ion battery (ASSLiB) by neutron depth profiling (NDP). Radiat Eff Defects Solids 175(3–4):394–405

    Article  CAS  Google Scholar 

  5. Linsenmann F et al (2020) A liquid electrolyte-based lithium-ion battery cell design for operando neutron depth profiling. J Electrochem Soc 167(10):100554

    Article  CAS  Google Scholar 

  6. Fuller EJ et al (2021) Spatially resolved potential and li-ion distributions reveal performance-limiting regions in solid-state batteries. ACS Energy Lett 6(11):3944–3951

    Article  CAS  Google Scholar 

  7. Wang J et al (2014) Profiling lithium distribution in Sn anode for lithium-ion batteries with neutrons. J Radioanal Nucl Chem 301(1):277–284

    Article  CAS  Google Scholar 

  8. Liu DX et al (2014) In situ quantification and visualization of lithium transport with neutrons. Angew Chem 126(36):9652–9656

    Article  Google Scholar 

  9. Carlson A et al (2009) International evaluation of neutron cross section standards. Nucl Data Sheets 110(12):3215–3324

    Article  CAS  Google Scholar 

  10. Mughabghab S (2003) Thermal neutron capture cross sections resonance integrals and g-factors

  11. Firestone R, Revay Z (2016) Thermal neutron capture cross sections for O 16, 17, 18 and H 2. Phys Rev C 93(4):044311

    Article  Google Scholar 

  12. Cook J (2020) A new cold neutron beam position for Neutron Depth Profiling on NG-A. NIST Center for Neutron Research. (Internal Report)

  13. Brown DA et al (2018) ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl Data Sheets 148:1–142

    Article  CAS  Google Scholar 

  14. Maki JT, Fleming RF, Vincent DH (1986) Deconvolution of neutron depth profiling spectra. Nucl Instrum Methods Phys Res Sect B 17(2):147–155

    Article  Google Scholar 

  15. Biersack J et al (1978) The use of neutron induced reactions for light element profiling and lattice localization. Nucl Inst Methods 149(1–3):93–97

    Article  CAS  Google Scholar 

  16. Downing RG (2013) NIST neutron depth profiling facility: 2013, invited. Trans-Am Nuclear Soc 109

  17. Ziegler J (2008) SRIM/TRIM code

  18. Bohr N (1915) LX On the decrease of velocity of swiftly moving electrified particles in passing through matter. Lond Edinburgh Dublin Philos Mag J Sci 30(178):581–612

    Article  CAS  Google Scholar 

  19. Biersack J (1981) Calculation of projected ranges—analytical solutions and a simple general algorithm. Nuclear Instrum Methods 182:199–206

    Article  Google Scholar 

  20. Biersack J (1982) New projected range algorithm as derived from transport equations. Zeitschrift für Physik A Atoms and Nuclei 305(2):95–101

    Article  CAS  Google Scholar 

  21. Biersack JP, Haggmark L (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Inst Methods 174(1–2):257–269

    Article  CAS  Google Scholar 

  22. Ziegler J, Biersack J, Ziegler M (2015) SRIM: the stopping and range of ions in matter, 5th edn. SRIM Co., Chester

    Google Scholar 

  23. Gibbs MN, MacKay DJ (2000) Variational Gaussian process classifiers. IEEE Trans Neural Netw 11(6):1458–1464

    Article  CAS  Google Scholar 

  24. Ryssel H et al (1977) Comparison of range and range straggling of implanted 10B and 11B in silicon. Appl Phys Lett 30(8):399–401

    Article  CAS  Google Scholar 

  25. Lee MC, Verghese K, Gardner R (1988) A model for the detector response function in neutron depth profiling. Nucl Instrum Methods Phys Res Sect B 31(4):567–575

    Article  Google Scholar 

  26. Hnatowicz V, Vacik J, Fink D (2010) Deconvolution of charged particle spectra from neutron depth profiling using Simplex method. Rev Sci Instrum 81(7):073906

    Article  CAS  Google Scholar 

  27. Jahnel F et al (1981) Description of arsenic and boron profiles implanted in SiO2, Si3N4 and Si using Pearson distributions with four moments. Nucl Inst Methods 182–183:223–229

    Article  Google Scholar 

  28. Shultis J (2003) Notes on neutron depth profiling. Engineering Experiment Station Report 298

  29. Coakley K et al (1995) Modeling detector response for neutron depth profiling. Nucl Instrum Methods Phys Res Sect A 366(1):137–144

    Article  CAS  Google Scholar 

  30. Hofker WK (1975) Implantation of boron in silicon. Amsterdam Univ, Netherlands

    Google Scholar 

  31. Winterbon K (1983) Pearson distributions for ion ranges. Appl Phys Lett 42(2):205–206

    Article  CAS  Google Scholar 

  32. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Berlin

    Book  Google Scholar 

  33. Biersack J (1987)Three-dimensional distributions of ion range and damage including recoil transport. Nucl Instrum Methods Phys Res Sect B 19: 32–36

    Article  Google Scholar 

  34. Ashworth D, Oven R, Mundin B (1990) Representation of ion implantation profiles by Pearson frequency distribution curves. J Phys D Appl Phys 23(7):870

    Article  CAS  Google Scholar 

  35. Pobočíková I, Sedliačková Z (2014) Comparison of four methods for estimating the Weibull distribution parameters. Appl Math Sci 8(83):4137–4149

    Google Scholar 

  36. Lamaze GP et al (1997) Neutron depth profiling with the new NIST cold neutron source. Surf Interface Anal Int J Dev Dev Appl Techn Anal Surf Interfaces Thin Films 25(3):217–220

    CAS  Google Scholar 

  37. Manandhar K et al (2020) High-throughput exploration of lithium-alloy protection layers for high-performance lithium-metal batteries. ACS Appl Energy Mater 3(3):2547–2555

    Article  CAS  Google Scholar 

  38. Systat Software, SigmaPlot. 2017

  39. Systat Software, PeakFit. 2017

  40. Lamaze GP et al (1994) Analysis of cubic boron nitride thin films by neutron depth profiling. Diam Relat Mater 3(4):728–731

    Article  CAS  Google Scholar 

  41. Lyons, D. J., & Weaver, J. L. (2022). Considerations in applying neutron depth profiling (NDP) to Li-ion battery research. J Mater Chem A, 10(5), 2336–2351

Download references

Acknowledgements

The authors would like to thank Dr. Joe Dura for providing critical feedback on drafts of this manuscript. Use of a thin Kapton layer to filter out the alpha spectrum from the triton NDP spectrum was initially proposed by Dr. Raymond Cao (Ohio State University). Partial funding for this work was provided by the NIST Summer High School Internship. Trade names and commercial products are identified in this paper to specify the experimental procedures in adequate detail. This identification does not imply recommendation or endorsement by the authors or by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose. Contributions of the National Institute of Standards and Technology are not subject to copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Weaver.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, J.L., Job, A., Manandhar, K. et al. Energy broadening of neutron depth profiles by thin polyamide films. J Radioanal Nucl Chem 331, 5013–5025 (2022). https://doi.org/10.1007/s10967-022-08517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08517-5

Keywords

Navigation