Skip to main content
Log in

Intensified gaseous-phase precipitation of ammonium di-uranate through ultrasonic assisted route

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sonochemical precipitation of ammonium di uranate (ADU) is studied through precipitative reaction between uranyl nitrate and gaseous ammonia using ultrasonic horn. Effort has been made to investigate the effect of different process parameters such as uranium concentration, temperature and pH of solution on evaluating the physical and morphological characteristics of ADU. ADU was characterized through particle size, surface area, XRD & SEM analysis etc. The results revealed almost a twofold increase in precipitation kinetics in sonochemical route having smaller average particles (agglomer) and superior quality of ADU crystals with respect to uniformity and crystallinity compared to that of the conventional route. Significant improvement is also noticed in surface area and tap density of the prepared ADU powder. Thus, sonochemical technique for gaseous precipitation of ADU suggested an improved quality of the precipitate amenable for downstream process steps for the fuel preparation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Harrington CD, Ruehle AE (eds) (1959) Uranium production technology. D. Van Nostrand Company. Inc., New Jersey

    Google Scholar 

  2. Gupta CK, Singh H (2003) Uranium resource processing: secondary resources. Springer, Germany

    Google Scholar 

  3. Hoyt RC (1978) Precipitation kinetics of a continuous precipitator, with application to the precipitation of ammonium polyuranate, Retrospective Theses and Dissertations. Paper 6459

  4. Cordfunke EHP (1962) On the uranates of ammonium-I: the ternary system NH3- UO3-H2O. J Inog Nucl Chem 24:303–307

    Article  CAS  Google Scholar 

  5. Debets PC, Loopstra BO (1963) On the uranates of ammonium-II x-ray investigation of the compounds in the system NH3-UO2-H2O. J Inog Nucl Chem 25:945–953

    Article  CAS  Google Scholar 

  6. Stuart WI, Whateley TI (1969) Composition and structure of ammonium uranetes. J Inorg Nucl Chem 31:1639–1647

    Article  CAS  Google Scholar 

  7. Stuart WI, Miller DJ (1973) The nature of ammonium uranates. J Inorg Nucl Chem 35(6):2109–2111

    Article  CAS  Google Scholar 

  8. Woolfrey JL (1978) The preparation of UO2 powder: effect of ammonium uranate properties. J Nucl Mater 74:123–131

    Article  CAS  Google Scholar 

  9. Doi H, Ito T (1964) Significance of physical state of starting precipitate in growth of uranium dioxide particle. J Nucl Mater 1:94–106

    Article  Google Scholar 

  10. Janov JJ, Alfredson PG, Vilkaitis VK (1972) The influence of precipitation conditions on the properties of ammonium diuranate and uranium dioxide powders. J Nucl Mater 44:161–174

    Article  CAS  Google Scholar 

  11. Steeper TJ, Zink JC (1974) Particle size distribution of ammonium diuranate precipitate. Proc Okha Acad Sci 54:83–87

    CAS  Google Scholar 

  12. Narsimha BM, Balakrishna P, Yadav RB, Ganguly C (2001) Influence of temperature of precipitation on agglomeration and other powder characteristics of ammonium di-uranate. Powder Technol 115:167–183

    Article  Google Scholar 

  13. Manna S, Roy SB, Joshi JB (2012) Study of crystallization and morphology of ammonium diuranate and uranium oxide. J Nucl Mater 424(1–3):94–100

    Article  CAS  Google Scholar 

  14. Paik S, Biswas S, Bhattacharya S, Roy SB (2013) Effect of ammonium nitrate on precipitation of ammonium di-uranate (ADU) and its characteristics. J Nucl Mater 440:34–38

    Article  CAS  Google Scholar 

  15. Mason TJ (1990) The uses of ultrasound in chemistry. The Royal Society of Chemistry

  16. Mason TJ, Lorimer JP (2002) Applied sonochemistry. The uses of power ultrasound in chemistry and processing. Wiley, pp 25–32

    Chapter  Google Scholar 

  17. Patil MN, Pandit AB (2007) Cavitation—a novel technique for making stable nanosuspensions. Ultrason Sonochem 14:519–530

    Article  CAS  Google Scholar 

  18. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260(2):80–87

    Article  CAS  Google Scholar 

  19. McCausland LJ, Cains PW, Martin PD (2001) Use the power of sonocrystallization for improved properties. Chem Eng Progress 97:56–61

    CAS  Google Scholar 

  20. Guo Z, Jones AG, Li N (2006) The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization. Chem Eng Sci 61:1617–1626

    Article  CAS  Google Scholar 

  21. Liang J, Jiang X, Liu G, Deng Z, Zhuang J, Li F, Li Y (2003) Characterization and synthesis of pure ZrO2 nanpowders via sonochemical method. Mater Res Bull 38:161–168

    Article  CAS  Google Scholar 

  22. Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2011) Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature. Ultrason Sonochem 18:1128–1137

    Article  CAS  Google Scholar 

  23. Pinjari DV, Pandit AB (2011) Room temperature synthesis of crystalline CeO2 nanopowder: advantage of sonochemical method over conventional method. Ultrason Sonochem 18:1118–1123

    Article  CAS  Google Scholar 

  24. Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol–gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703

    Article  CAS  Google Scholar 

  25. Gielen B, Thimmesch Y, Jordensb J, Jansse G, Thomassen LCJ, Van Gerven T, Braeken L (2016) Ultrasonic precipitation of manganese carbonate: reactor design and scale-up. Chem Eng Res Des 115:131–144

    Article  CAS  Google Scholar 

  26. Mohod AV, Gogate PR (2018) Improved crystallization of Ammonium sulphate using ultrasound assisted approach with comparison with the conventional approach. Ultrason Sonochem 41:310–318

    Article  CAS  Google Scholar 

  27. Seikh AR, Patel SR (2014) Ultrasound assisted reactive crystallization of strontium sulphate. J Cryst Growth 390:114–119

    Article  CAS  Google Scholar 

  28. Nishida I (2004) Precipitation of calcium carbonate by ultrasonic irradiation. Ultrason Sonochem 11(6):423–428

    Article  CAS  Google Scholar 

  29. Kojima Y, Yamaguchi K, Nishimiya N (2010) Effect of amplitude and frequency of ultrasonic irradiation on morphological characteristic control of calcium carbonate. Ultrason Sonochem 17:617–620

    Article  CAS  Google Scholar 

  30. Virot M, Venault L, Moisy P, Nikitenko SI (2015) Sonochemical redox reactions of Pu(III) and Pu(IV) in aqueous nitric solutions. Dalton Trans 44:2567

    Article  CAS  Google Scholar 

  31. Paik S, Satpati SK, Gupta SK, Sahu ML, Singh DK (2021) Study on the effects of sonication on reactive precipitation of ammonium uranyl carbonate from pure uranyl nitrate solution. J Nucl Mater 557:153222

    Article  CAS  Google Scholar 

  32. Paik S, Satpati SK, Singh DK (2022) A novel approach of precipitation of ammonium di-uranate (ADU) by sonochemical route. Prog Nucl Energy 143:104034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrishma Paik.

Ethics declarations

Conflict of interest

It is hereby declared that there is no conflict of interest with respect to the work carried out by the authors and also there is no fund obligation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paik, S., Satpati, S.K. & Singh, D.K. Intensified gaseous-phase precipitation of ammonium di-uranate through ultrasonic assisted route. J Radioanal Nucl Chem 331, 4227–4237 (2022). https://doi.org/10.1007/s10967-022-08490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08490-z

Keywords

Navigation