Skip to main content
Log in

A CFD based approach to assess the effect of environmental parameters on decay product-aerosol attachment coefficient

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Attachment of decay products of radon and thoron to environmental aerosols is an important process which govern the inhalation dose. This process is characterised by the attachment coefficient, that depends on size characteristics of aerosols and environmental parameters like temperature and extent of air turbulence. In the present work, CFD based simulations have been carried out to study the attachment behaviour of thoron decay product,212Pb, with mono-disperse as well as poly-disperse aerosols in an experimental chamber. The variations of attachment coefficient with temperature and turbulence have been studied. The simulation results have been compared with data reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomásek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case-control studies. BMJ 330(7485):223. https://doi.org/10.1136/bmj.38308.477650.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Létourneau EG, Lynch CF, Lyon JI, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB (2005) Residential radon and risk of lung cancer: a combined analysis of 7 North American case-control studies. Epidemiology 16(2):137–145

    Article  Google Scholar 

  3. UNSCEAR (2000) Sources and effects of ionizing radiation: UNSCEAR 2000 Report to the General Assembly with Scientific Annexes, New York, United Nations. https://doi.org/10.1097/00004032-199907000-00007

  4. WHO (2009) Handbook on indoor radon: a public health perspective. World Health Organization, Geneva. https://doi.org/10.1080/00207230903556771

    Book  Google Scholar 

  5. Porstendorfer J (1984) Behaviour of radon daughter products in indoor air. Radiat Prot Dosimetry 7(1–4):107–113

    Article  Google Scholar 

  6. Porstendörfer J (1994) Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci 25(2):219–263

    Article  Google Scholar 

  7. ICRP (2017) Occupational intakes of radionuclides: part 3 ICRP publication 137. Ann ICRP. https://doi.org/10.1177/0146645317734963

    Article  Google Scholar 

  8. Kruger J, Nöthling JF (1979) A comparison of the attachment of the decay products of radon-220 and radon-222 to monodispersed aerosols. J Aerosol Sci 10(6):571–579. https://doi.org/10.1016/0021-8502(79)90019-3

    Article  CAS  Google Scholar 

  9. Raabe OG (1969) Concerning the interactions that occur between radon decay products and aerosols. Health Phys 17(2):177–185

    Article  CAS  Google Scholar 

  10. Agarwal TK, Sahoo BK, Gaware JJ, Joshi M, Sapra BK (2014) CFD based simulation of thoron (220Rn) concentration in a delay chamber for mitigation application. J Environ Radioact 136:16–21

    Article  CAS  Google Scholar 

  11. Agarwal TK, Sahoo B, Joshi M, Mishra R, Meisenberg O, Tschiersch J, Sapra B (2019) CFD simulations to study the effect of ventilation rate on 220Rn concentration distribution in a test house. Radiat Phys Chem 162:82–89. https://doi.org/10.1016/j.radphyschem.2019.04.018

    Article  CAS  Google Scholar 

  12. Agarwal TK, Sahoo BK, Kumar M, Sapra BK (2021) A Computational fluid dynamics code for aerosol and decay-product studies in indoor environments. J Radioanal Nucl Chem 330(3):1347–1355. https://doi.org/10.1007/s10967-021-07877-8

    Article  CAS  Google Scholar 

  13. Zhou W, Iida T, Moriizumi J, Aoyagi T, Takahashi I (2001) Simulation of the concentrations and distributions of indoor radon and thoron. Radiat Prot Dosimetry 93(4):357–367. https://doi.org/10.1093/oxfordjournals.rpd.a006448

    Article  Google Scholar 

  14. De With G, De Jong P (2011) CFD modelling of thoron and thoron progeny in the indoor environment. Radiat Prot Dosimetry 145(2–3):138–144

    Article  Google Scholar 

  15. Lee CW, Kim HR (2022) Spatial distribution analysis and dose assessment of the radon emitted from the monazite-containing mattress in general residential space by CFD methods. Radiat Prot Dosimetry 198(1–2):8

    Article  Google Scholar 

  16. Agarwal TK, Joshi M, Sahoo BK, Kanse SD, Sapra BK (2016) Effect of 220Rn gas concentration distribution on its transmission from a delay chamber: evolving a CFD-based uniformity index. Radiat Prot Dosimetry 168(4):546–552

    Article  CAS  Google Scholar 

  17. Agarwal TK, Sahoo B, Shetty T, Gaware J, Kumara S, Karunakara N, Sapra B, Datta D (2020) Numerical simulation of 222Rn profiling in an experimental chamber using CFD technique. J Environ Radioact 220:106298. https://doi.org/10.1016/j.jenvrad.2020.106298

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal TK, Gaware JJ, Sapra BK (2022) A CFD-based approach to optimize operating parameters of a flow-through scintillation cell for measurement of 220Rn in indoor environments. Environ Sci Pollut Res 29(11):16404–16417. https://doi.org/10.1007/s11356-021-16780-4

    Article  CAS  Google Scholar 

  19. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics, the finite volume method. Longman House, England

    Google Scholar 

  20. Mercer TT (1976) The effect of particle size on the escape of recoiling RaB atoms from particulate surfaces. Health Phys 31(2):173–175

    CAS  PubMed  Google Scholar 

  21. Vincenti WG, Kruger CH (1965) Introduction to physical gas dynamics. Krieger Publishing Company, New York

    Google Scholar 

  22. Hinds WC, Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley

    Google Scholar 

  23. Baughman A, Gadgil A, Nazaroff W (1994) Mixing of a point source pollutant by natural convection flow within a room. Indoor Air 4(2):114–122

    Article  CAS  Google Scholar 

  24. Cheng K-C, Acevedo-Bolton V, Jiang R-T, Klepeis NE, Ott WR, Fringer OB, Hildemann LM (2011) Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environ Sci Technol 45(9):4016–4022

    Article  CAS  Google Scholar 

  25. Shao Y, Ramachandran S, Arnold S, Ramachandran G (2017) Turbulent eddy diffusion models in exposure assessment-Determination of the eddy diffusion coefficient. J Occup Environ Hyg 14(3):195–206

    Article  Google Scholar 

  26. Venkatram A, Weil J (2021) Modeling turbulent transport of aerosols inside rooms using eddy diffusivity. Indoor Air 31(6):1886–1895

    Article  CAS  Google Scholar 

  27. Nicas M (2001) Modeling turbulent diffusion and advection of indoor air contaminants by Markov chains. AIHAJ-American Industrial Hygiene Association 62(2):149–158

    Article  CAS  Google Scholar 

  28. Bigu J, Elliott J (1994) An instrument for continuous measurement of 220Rn (and 222Rn) using delayed coincidences between 220Rn and 216Po. Nucl Instrum Methods Phys Res, Sect A 344(2):415–425. https://doi.org/10.1016/0168-9002(94)90091-4

    Article  CAS  Google Scholar 

  29. Porstendorfer J, Mercer T (1979) Influence of electric charge and humidity upon the diffusion coefficient of radon decay products. Health Phys 37(2):191–199

    Article  CAS  Google Scholar 

  30. Porstendörfer J, Reineking A, Becker K (1987) Free fractions, attachment rates, and plate-out rates of radon daughters in houses. In: Hopke PK (ed) Radon and its decay products: occurrence, properties, and health effects. ACS Publications, Washington

    Google Scholar 

  31. Tokonami S (2000) Experimental verification of the attachment theory of radon progeny onto ambient aerosols. Health Phys 78(1):74–79

    Article  CAS  Google Scholar 

  32. El-Hussein A (1996) Unattached fractions, attachment and deposition rates of radon progeny in indoor air. Appl Radiat Isot 47(5–6):515–523

    Article  CAS  Google Scholar 

Download references

Funding

No Grant or external funding has been provided for carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, methodology, data generation and analysis. The first draft of the manuscript was written by TKA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tarun K. Agarwal.

Ethics declarations

Conflict of interest

There is no conflict of interest and competition interest.

Ethical approval and consent to participate

Not Applicable.

Consent to publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T.K., Kanse, S.D., Mishra, R. et al. A CFD based approach to assess the effect of environmental parameters on decay product-aerosol attachment coefficient. J Radioanal Nucl Chem 331, 3563–3570 (2022). https://doi.org/10.1007/s10967-022-08402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08402-1

Keywords

Navigation