Skip to main content
Log in

Sediments accretion at Guarapiranga reservoir, metropolitan region of São Paulo, Brazil, by the 210Pb chronological method

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess 210Pb models have been applied to a 210Pb data set providing of two sediments profiles (GUA-T1 and GUA-T2) sampled at Guarapiranga reservoir, in the Metropolitan Region of São Paulo city, São Paulo State, Brazil. Sedimentation rates obtained by the CF:CS model corresponded to 9.3–12.3 and 30 mg.cm− 2yr− 1, respectively, for profiles GUA-T1 and GUA-T2, indicating a better chronological performance relatively to that of the CRS model in the study area, also allowing successful estimates of the P fluxes in the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [29, 30]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krueger KM, Vavrus CE, Lofton ME et al (2020) Iron and manganese fluxes across the sediment-water interface in a drinking water reservoir. Water Res 182:116003

    Article  CAS  PubMed  Google Scholar 

  2. Paerl HW, Xu H, McCarthy MJ, Zhu G, Qin B, Li Y, Gardner WS (2011) Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N & P) management strategy. Water Res 45(5):1973–1983

    Article  CAS  PubMed  Google Scholar 

  3. Boers PCM (1991) The release of dissolved phosphorus from lake sediments. PhD Thesis, Institute for Inland Water Management and Waste Water Treatment, Lelystad, the Netherlands

  4. Matisoff G, Kaltenberg EM, Steely RL, Hummel SK, Seo J, Gibbons KJ, Bridgeman TB, Seo Y, Behbahani M, James WF, Johnson LT, Doan P, Dittrich M, Evans MA, Chaffin JD (2016) Internal loading of phosphorus in western Lake Erie. J Great Lakes Res 42:775–788

    Article  CAS  Google Scholar 

  5. Ogdahl ME, Steinman AD, Weinert ME (2014) Laboratory-determined phosphorus flux from lake sediments as a measure of internal phosphorus loading. J Vis Exp 85:e51617

    Google Scholar 

  6. Norgbey E, Li Y, Zhu Y, Nwankwegu AS, Bofah-Buah R, Nuamah L (2021) Seasonal dynamics of iron and phosphorus in reservoir sediments in Eucalyptus plantation region. Ecol Process 10:10

    Article  Google Scholar 

  7. Paudel B, Weston N, O’Connor J, Sutter L, Velinsky D (2017) Phosphorus Dynamics in the Water Column and Sediments of Barnegat Bay, New Jersey. J Coast Res 78:60–69

    Article  CAS  Google Scholar 

  8. Cherdyntsev VV (1969) Uranium-234. IPST-Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  9. Eakins JD, Morrison RT (1978) A new procedure for the determination of lead-210 in lake and marine sediments. Appl Radiat Isot 29:531–536

    Article  CAS  Google Scholar 

  10. Kathren RL (1984) Radioactivity in the environment: sources, distribution and surveillance. Harwood Academic Publishers, New York

    Google Scholar 

  11. Abril JM (2003) Difficulties in interpreting fast mixing in the radiometric dating of sediments using 210Pb and 137Cs. J Paleolimnol 30:407–414

    Article  Google Scholar 

  12. Abril JM (2004) Constraints on the use of 137Cs as a time-marker to support CRS and SIT chronologies. Environ Pollut 129:31–37

    Article  CAS  PubMed  Google Scholar 

  13. Spliethoff H (1996) History of toxic metal discharge to surface waters of the Aberjona watershed. Environ Sci Technol 30:121–128Hemond H ()

    Article  CAS  Google Scholar 

  14. Celis-Hernández O, Rosales-Hoz L, Cundy AB, Carranza-Edwards A, Croudace IW, Hernandez-Hernandez H (2018) Historical trace element accumulation in marine sediments from the Tamaulipas shelf, Gulf of Mexico: an assessment of natural vs. anthropogenic inputs. Sci Total Environ 622–623:325–336

    Article  PubMed  CAS  Google Scholar 

  15. Appleby PG, Oldfield F (1992) In: Ivanovich M, Harmon RS (eds) Uranium series disequilibrium: applications to environmental problems, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  16. Turner LJ, Delorme LD (1996) Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ Geol 28(2):78–87

    Article  CAS  Google Scholar 

  17. Bonotto DM, Garcia-Tenorio R (2014) A comparative evaluation of the CF:CS and CRS models in 210Pb chronological studies applied to hydrographic basins in Brazil. Appl Radiat Isot 92:58–72

    Article  CAS  PubMed  Google Scholar 

  18. San Miguel EG, Bolívar JP, García-Tenorio R, Martín JE (2001) 230Th/232Th activity ratios as a chronological marker complementing 210Pb dating in an estuarine system affected by industrial releases. Environ Pollut 112:361–368

    Article  CAS  PubMed  Google Scholar 

  19. Baskaran M, Naidu AS (1995) 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Artic. Geochim Cosmochim Acta 59(21):4435–4448

    Article  CAS  Google Scholar 

  20. Krishnaswami S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414

    Article  Google Scholar 

  21. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  CAS  Google Scholar 

  22. Robbins JA (1978) In: Nriagu JO (ed) Biochemistry of lead. Elsevier, Amsterdam

    Google Scholar 

  23. El-Daoushy F (1988) A summary on the lead-210 cycle in nature and related applications in Scandinavia. Environ Int 14:305–319

    Article  CAS  Google Scholar 

  24. Kotarba A, Lokas E, Wachniew P (2002) 210Pb dating of young Holocene sediments in high-mountains lakes of the Tatra mountains. Geochronometria 21:73–78

    Google Scholar 

  25. Silva DB, Monteiro LR, Generoso MF, Bicudo C, Bicudo D, Cotrim MEB, Pires MAF (2013) Study about iron and phosphorus in waters and sediments from Guarapiranga dam, São Paulo, Brazil. In: ABRH (Brazilian Society of Hydric Resources) (ed) Proc XX Brazilian Symposium of Hydric Resources. ABRH, Bento Gonçalves (in Portuguese)

  26. Otomo JI (2015) Anthropic contribution for the quality of waters from Guarapiranga dam – a study about edocrine disruptors. PhD Thesis, IPEN-Institute for Energetic and Nuclear Researchers, São Paulo (in Portuguese)

  27. Whately M, Cunha PM (2006) Guarapiranga 2005 – How and why São Paulo is missing this reservoir: results of the socio-environmental participative diagnosis of the Guarapiranga hydrographic basin. ISA – Socio-environmental Institute, São Paulo. (in Portuguese)

    Google Scholar 

  28. Mozeto AA, Silvério PF, Soares A (2001) Estimates of benthic fluxes of nutrients across the sediment-water interface (Guarapiranga reservoir, São Paulo, Brazil). Sci Total Environ 266:135–142

    Article  CAS  PubMed  Google Scholar 

  29. Andrade MRM, Salim A, Rossini-Penteado D, da Costa JA, de Souza AA, Saad AR, Oliveira ASM (2015) Mapping of the land use for evaluating the water quality from Guarapiranga reservoir. Geosciences 34(2):258–275 (in Portuguese)

    Google Scholar 

  30. Bicudo CEM, Bicudo DC (2017) 100 years of Guarapiranga dam: lessons and challenges. CRV Publishers, São Paulo. (in Portuguese)

    Google Scholar 

  31. Bicudo CEM (2010) Paleolimnological reconstruction of Guarapiranga dam and diagnosis of actual quality of waters and sedimentsfrom RMSP watersheds aiming the management of the present supply. Technical Report. FAPESP – Foundation for Supporting Research at São Paulo State, São Paulo (in Portuguese)

  32. Beyruth Z (2000) Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Reservoir, São Paulo State, Brazil. Hydrobiologia 424:51–65

    Article  CAS  Google Scholar 

  33. Fontana L, Albuquerque ALS, Brenner M, Bonotto DM, Sabaris TPP, Pires MAF, Cotrim MEB, Bicudo DC (2014) The eutrophication history of a tropical water supply reservoir in Brazil. J Paleolimnol 51:29–43

    Article  Google Scholar 

  34. da Silva LF, Thesis (1991) UNESP-São Paulo State University, Rio Claro (in Portuguese)

  35. Karali T, Ölmez S, Yener G (1996) Study of spontaneous deposition of 210Po on various metals and application for activity assessment in cigarette smoke. Appl Radiat Isot 47:409–411

    Article  CAS  Google Scholar 

  36. Flynn WW (1968) The determination of low levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  CAS  PubMed  Google Scholar 

  37. Bonotto DM (2010) The Poços de Caldas hot spot: a big blast for nuclear energy in Brazil. Nova Science, New York

    Google Scholar 

  38. Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  39. Bonotto DM, Caprioglio L (2002) Radon in groundwaters from Guarany aquifer, South America: environmental and exploration implications. Appl Radiat Isot 57:931–940

    Article  CAS  PubMed  Google Scholar 

  40. Du P, Walling DE (2012) Using 210Pb measurements to estimate sedimentation rates on river floodplains. J Environ Radioact 103:59–75

    Article  CAS  PubMed  Google Scholar 

  41. Bonotto DM, Lima JLN (2006) 210Pb-derived chronology in sediment cores evidencing the anthropogenic occupation history at Corumbataí River basin, Brazil. Environ Geol 50(4):595–611

    Article  CAS  Google Scholar 

  42. Sabaris TPP, Bonotto DM (2010) Sedimentation rates in Atibaia River basin, São Paulo State, Brazil, using 210Pb as geochronometer. Appl Radiat Isot 69:275–288

    Article  PubMed  CAS  Google Scholar 

  43. Nery JRC, Bonotto DM (2011) 210Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá, Brazil. J Environ Radioact 102:348–362

    Article  CAS  PubMed  Google Scholar 

  44. Matamet FRM, Bonotto DM (2013) Evaluation of the chromium contamination at Ribeirão dos Bagres, Franca (SP), Brazil, by the 210Pb method. Appl Radiat Isot 82:359–369

    Article  CAS  PubMed  Google Scholar 

  45. Bonotto DM, Vergotti M (2015) 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil. Appl Radiat Isot 99:5–19

    Article  CAS  PubMed  Google Scholar 

  46. Matamet FRM, Bonotto DM (2018) A 210Pb chronological study in sediments from Poços de Caldas Alkaline Massif (PCAM), Brazil. Appl Radiat Isot 137:108–117

    Article  CAS  PubMed  Google Scholar 

  47. Matamet FRM, Bonotto DM (2019) Sedimentation rates at Ramis River, Peruvian Altiplano, South America. Environ Earth Sci 78:230

    Article  CAS  Google Scholar 

  48. Matamet FRM, Bonotto DM (2019) Identifying sedimentation processes in the Coata River, Altiplano of the Puno Department, Peru, by the 210Pb method. Environ Earth Sci 78:641

    Article  CAS  Google Scholar 

  49. Bonotto DM, Garcia-Tenorio R (2019) Investigating the migration of pollutants at Barreiro area, Minas Gerais State, Brazil, by the 210Pb chronological method. J Geochem Explor 196:219–234

    Article  CAS  Google Scholar 

  50. Bonotto DM (2020) Tracking pollutants in selected Brazilian drainages from Araxá city. Appl Radiat Isot 155:108916

    Article  CAS  PubMed  Google Scholar 

  51. Udden JA (1898) Mechanical composition of wind deposits. Augustana Libr Publ 1:1–69

    Google Scholar 

  52. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. Jour Geol 30:377–392

    Article  Google Scholar 

  53. Krumbein WC (1934) Size frequency distributions of sediments. J Sediment Petrol 4:65–77

    Article  Google Scholar 

  54. Wanty RB, Lawrence EP, Gundersen LCS (1992) In: Gates AE, Gundersen LCS (eds) Geologic controls on radon. Geol Soc Am, Boulder

    Google Scholar 

  55. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:52–79

    Article  Google Scholar 

  56. Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105(32):11039–11040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Figueredo CC, Pinto-Coelho RM, Lopes AMMB, Lima PHO, Gücker B, Giani A (2016) From intermittent to persistent cyanobacterial blooms: identifying the main drivers in an urban tropical reservoir. J Limnol 75(3):445–454

    Google Scholar 

  59. Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. Proc R Soc B Biol Sci 279(1746):4322–4333

    Article  CAS  Google Scholar 

  60. Clavero V, Izquierdo JJ, Fernández JA, Niell FX (2000) Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain). Mar Ecol Prog Ser 198:51–60

    Article  CAS  Google Scholar 

  61. Khalil MK, Rifaat AE (2013) Seasonal fluxes of phosphate across the sediment-water interface in Edku Lagoon. Egypt Oceanologia 55(1):219–233

    Article  Google Scholar 

  62. Dadi T, Rinke K, Friese K (2020) Trajectories of Sediment-Water Interactions in Reservoirs as a Result of Temperature and Oxygen Conditions. Water 12:1065

    Article  Google Scholar 

  63. Papera J, Araújo F, Becker V (2021) Sediment phosphorus fractionation and flux in a tropical shallow lake. Acta Limnol Bras 33:e5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP (Foundation for Supporting Research at São Paulo State) for supporting this study by AcquaSed Project (Process No. 2009/53898-9). Two anonymous reviewers are greatly thanked for helpful comments that improved the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Bonotto.

Ethics declarations

Declaration on conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonotto, D.M., Sabaris, T.P.P., Bicudo, D.C. et al. Sediments accretion at Guarapiranga reservoir, metropolitan region of São Paulo, Brazil, by the 210Pb chronological method. J Radioanal Nucl Chem 331, 2869–2882 (2022). https://doi.org/10.1007/s10967-022-08382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08382-2

Keywords

Navigation