Skip to main content
Log in

Experimental study of ruthenium volatilization from boiling nitric solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As part of study of the volatilization ruthenium behaviour in a boiling nitric solution, this paper presents the results of experiments dealing with the influence of different parameters (Ru and HNO3 concentrations, temperature, water addition) and the effect of in-situ inhibitors to mitigate potential releases. The amount of Ru volatilized from a nitric solution heated at 130 °C is about 2% of initial inventory. The addition of a low amount of inhibitors allowed to prevent ruthenium volatilization. Alternative strategies examined to restrict volatilization are the temperature decrease and the “water feed”, this later is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Swain P, Mallika C, Srinivasan R, Mudali UK, Natarajan R (2013) Separation and recovery of ruthenium: a review. J Radioanal Nucl Chem 298:781–796. https://doi.org/10.1007/s10967-013-2536-5

    Article  CAS  Google Scholar 

  2. Ustinov OA, Yakunin SA, Voskresenskaya YuA (2021) Ruthenium in radioactive waste vitrification technology (Scientific and technical information overview). Radiochemistry 63(3):263–268. https://doi.org/10.1134/S1066362221030024

    Article  CAS  Google Scholar 

  3. Klein M, Weyers C, Goossens WA (1985) The behavior of ruthenium, cesium and antimony during simulated HLLW vitrification, In: Proceedings 18th DOE nuclear airbone waste management and air cleaning conference., Baltimore, Maryland, 12–16 August 1984, CONF-840806 1:702–731. https://inis.iaea.org/search/search.aspx?orig_q=RN:17013584

  4. Philippe M, Mercier JP, Gué JP (1990) Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks. In: Proceedings of 21st DOE/NRC nuclear air cleaning conference, San Diego, California, pp 831–843. https://inis.iaea.org/search/search.aspx?orig_q=RN:35070205

  5. De Almeida L, Nerisson P, Barrachin M, Cantrel L, Mun C, Ricciardi L, Philippe M (2019) R&D programme on volatilization and transport behaviour of ruthenium under a loss of cooling accident on high level liquid waste (HLLW) storage tanks in reprocessing plants and mitigation strategies. In: Proceedings of the nuclear energy agency international workshop on chemical hazards in fuel cycle facilities nuclear processing–Appendix C. Nuclear Safety NEA/CSNI/R(2019)9/ADD1, May 2019. https://www.oecd-nea.org/jcms/pl_19916/proceedings-of-international-workshop-on-chemical-hazards-in-fuel-cycle-facilities-nuclear-processing-appendix-c

  6. Nerisson P, Barrachin M, Ohnet MN, Cantrel L (in press) Behaviour of ruthenium in nitric media (HLLW) in reprocessing plants: a review. J Radioanal Nucl Chem

  7. Sasahira A, Hoshikawa T, Kamoshida M, Kawamura F (1996) Transfer of ruthenium from a simulated reprocessing solution to gas phase during a continuous distillation. J Nucl Sci Technol 33(10):753–775. https://doi.org/10.1080/18811248.1996.9731999

    Article  CAS  Google Scholar 

  8. Sasahira A, Kawamura F (1988) Formation rate and gas-liquid equilibrium of RuO4. J Nucl Sci Technol 25(5):472–478. https://doi.org/10.1080/18811248.1988.9733615

    Article  CAS  Google Scholar 

  9. Yoshida N, Ono T, Yoshida R, Amano Y, Abe H (2020) Decomposition behaviour of gaseous ruthenium tetroxide under atmospheric conditions assuming evaporation to dryness accident of high-level liquid waste. J Nucl Sci Technol 57(11):1256–1264. https://doi.org/10.1080/00223131.2020.1780991

    Article  CAS  Google Scholar 

  10. Kodama T, Shibata Y, Takahashi N, Matsuoka S, Kumagai M, Hayashi S, Suzuki K (2015) Experiments on the leak path factor of ruthenium volatilized from high-level liquid waste tanks in a reprocessing plant in case of the boiling and drying accident. J Nucl Sci Technol 52(4):467–471. https://doi.org/10.1080/00223131.2014.972476

    Article  CAS  Google Scholar 

  11. Mun C, Cantrel L, Madic C (2007) Study of RuO4 decomposition in dry and moist air. Radiochim Acta 95:643–656. https://doi.org/10.1524/ract.2007.95.11.643

    Article  CAS  Google Scholar 

  12. Nerisson P, Hu H, Paul JF, Cantrel L, Vesin C (2019) Filtration tests of gaseous ruthenium tetroxide by sand bed and metallic filters. J Radioanal Nucl Chem 321:591–598. https://doi.org/10.1007/s10967-019-06612-8

    Article  CAS  Google Scholar 

  13. Management group on the study of the behaviour of released radioactive materials in a reprocessing plant (2014) Japanese. https://iss.ndl.go.jp/books/R100000002-I025394315-00

  14. Ishio T, Shibata Y, Kodama T, Kato T, Tsukada T, Serrano-Purroy D, Glatz JP (2015) Study on radioactive material transport behavior from boiling/drying out high level liquid waste. In: Proceedings of global 2015, September 20–24, Paris, paper 5164, pp 1069–1075

  15. Sawada K, Ueda Y, Enokida Y (2016) Ruthenium release from thermally overheated nitric acid solution containing ruthenium nitrosyl nitrate and sodium nitrate to solidify. In: 5th International ATALANTE conference on nuclear chemistry for sustainable fuel cycles. procedia chemistry 21 pp 82–86. https://doi.org/10.1016/j.proche.2016.10.012

  16. Nerisson P, Barrachin M, Cantrel L, Philippe M (2019) Volatilization and trapping of ruthenium under a loss of cooling accident on high level liquid waste (HLLW) storage tanks in reprocessing plants. In: Proceedings of international nuclear fuel cycle conference global 2019, September 22–26, Seattle, pp 659. https://www.ans.org/pubs/proceedings/article-46990/

  17. Wilson A (1960) Ruthenium volatilization in the distillation of nitric acid. J Chem Engin Data 5–4:521–524. https://doi.org/10.1021/je60008a031

    Article  Google Scholar 

  18. Sinharoy P, Dubey VP, Banerjee D, Manohar S, Kaushik CP (2020) Studies on volatilization behaviour of RuO4 from nitric acid medium. Radiochim Acta 108:779–784. https://doi.org/10.1515/ract-2019-3230

    Article  CAS  Google Scholar 

  19. Ortins de Bettencourt A, Jouan A (1969) Volatilité du ruthenium au cours des operations de vitrification des produits de fission. CEA, Report CEA-R-363(1)

  20. Cains PW, Barnes SJ (1991) Deposition of volatilized ruthenium on stainless steels. J Nucl Mat 186:83–86. https://doi.org/10.1016/0022-3115(91)90356-C

    Article  CAS  Google Scholar 

  21. May CE, Newby BJ, Rohde KL, Withers BD (1958) Fission product ruthenium volatility in a high temperature process. U.S. atomic energy commission, report IDO-14439. https://www.osti.gov/biblio/4305137

  22. Hirose Y, Sasahira A, Yusa H, Masaoka I, Yoshida T, Furutani Y (1987) Implication of ruthenium in the acidic liquid evaporation processes. In: International conference on nuclear fuel reprocessing and waste management; Paris (France) 23–27 Aug 1987, 2:501–506. https://inis.iaea.org/search/search.aspx?orig_q=RN:19091830

  23. Sato T (1989) Volatilization behaviour of ruthenium from boiling nitric acid. J Radioanal Nucl Chem 129(1):77–84. https://doi.org/10.1007/BF02037570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed in the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), with the financial support of ORANO Cycle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Noëlle Ohnet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohnet, MN., Boucault, K., Nerisson, P. et al. Experimental study of ruthenium volatilization from boiling nitric solution. J Radioanal Nucl Chem 331, 2939–2953 (2022). https://doi.org/10.1007/s10967-022-08351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08351-9

Keywords

Navigation