Skip to main content
Log in

Molecular dynamics and density functional theory simulations of cesium and strontium adsorption on illite/ smectite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Based on molecular dynamics (MD) and density function theory (DFT) simulation, the adsorption mechanisms of Cs+ and Sr2+ on the illite/smectite(I/S) were investigated. The results show that the adsorption of Cs+ is mainly located in the planar sites(PS) and edge sites(ES) of I/S, whereas Sr2+ adsorption occurs primarily in the planar sites(PS) and interlayer sites(IS) of I/S. The adsorption of Cs+ on illite/smectite is mainly the result of the hybridization of p-p and p-d orbitals between Cs+ ions and Si/Al-O tetrahedra. In the coexistence of Cs+ and Sr2+, Sr2+ occupies the central adsorption site on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michel S, Kevin M, Rosso, Masahiko et al (2016) Radiation-damage resistance in phyllosilicate minerals from first principles and implications for radiocesium and strontium retention in soils. Clays Clay Miner 64(2):108–114. https://doi.org/10.1346/CCMN.2016.0640203

    Article  CAS  Google Scholar 

  2. Szenknect S, Ardois C, Gaudet JP, Barthès (2005) Reactive transport of 85Sr in a chernobyl sand column: static and dynamic experiments and modeling. J Contam Hydrol 76:139–135. https://doi.org/10.1016/j.jconhyd.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  3. Mishra S, Arae H, Zamostyan PV et al (2012) Sorption-desorption characteristics of uranium, cesium and strontium in typical podzol soils from Ukraine. Radiat Prot Dosimetry 152(1–3):238–242. https://doi.org/10.1093/rpd/ncs230

    Article  CAS  PubMed  Google Scholar 

  4. Wampler JM, Krogstad EJ, Elliott WC, Kahn B, Kaplan DI (2012) Long-term selective retention of natural Cs and Rb by highly weathered coastal plain soils. Environ Sci Technol 46(7):3837–3843. https://doi.org/10.1021/es2035834

    Article  CAS  PubMed  Google Scholar 

  5. Dyer A, Chow J, Umar IM (2000) The uptake of caesium and strontium radioisotopes onto clays. J Mater Chem 10(12):2734–2740. https://doi.org/10.1007/BF02345558

    Article  CAS  Google Scholar 

  6. Siroux B, Beaucaire C, Tabarant M, Benedetti MF, Reiller PE (2017) Adsorption of strontium and caesium onto an Na-MX80 bentonite: experiments and building of a coherent thermodynamic modelling. Appl Geochem 87:167–175. https://doi.org/10.1016/j.apgeochem.2017.10.022

    Article  CAS  Google Scholar 

  7. Siroux B, Wissocq A, Beaucaire C et al(2018)Adsorption of strontium and caesium onto an Na-illite and Na-illite/Na-smectite mixtures: Implementation and application of a multi-site ion-exchangemodel[J].Applied Geochemistry, 99,65–74. https://doi.org/10.1016/j.apgeochem.2018.10.024

  8. Liu C, Zachara JM, Smith SC (2004) A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA. J Contam Hydrol 68:217–238. https://doi.org/10.1016/S0169-7722(03)00143-8

    Article  CAS  PubMed  Google Scholar 

  9. Takashi I, Shinichi, Suzuki T, Yaita (2015) Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics. J Phys chemistryA 119(30):8369–8375. https://doi.org/10.1021/acs.jpca.5b05934

    Article  CAS  Google Scholar 

  10. Wissocq A, Beaucaire C, Latrille C (2017) Ca and Sr sorption on ca-illite: experimental study andmodelling. ProcediaEarth& Planet Sci 17:662–665. https://doi.org/10.1016/j.proeps.2016.12.177

    Article  Google Scholar 

  11. Gil-García CJ, Rigol A, Vidal M (2011) The use of hard- and soft-modelling to predict radiostrontium solid-liquid distribution coefficients in soils, 85(8),1400–1405. https://doi.org/10.1016/j.chemosphere.2011.08.015

  12. Sysoeva AA, Konopleva IV, Sanzharova NI (2005) Bioavailability of radiostrontium in soil: Experimental study and modeling-Science Direct. J Environ Radioact 81(2):269–282. https://doi.org/10.1016/j.jenvrad.2004.01.040

    Article  CAS  PubMed  Google Scholar 

  13. Bergeijk K et al (1992) Influence of pH, soil type and soil organic matter content on soil-to-plant transfer of radiocesium and strontium as analyzed by a nonparametric method. J Environ Radioact 153:265–276

    Article  Google Scholar 

  14. Ma Z, Ranjith PG, Rathnaweera T, Kong L (2018) Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl Clay Sci 168:436–449. https://doi.org/10.1016/j.clay.2018.11.018

    Article  CAS  Google Scholar 

  15. Okumura M, Kerisit S, Bourg IC et al (2019) Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima. J Environ Radioact 210:105809. https://doi.org/10.1016/j.jenvrad.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  16. Lammers LN, Bourg IC, Okumura M et al(2017)Molecular dynamics simulations of cesium adsorption on illite nanoparticles[J].Journal of Colloid & Interface Science, 490,608–620. https://doi.org/10.1016/j.jcis.2016.11.084

  17. Ebina T, Iwasaki T, Onodera Y et al (1999) A comparative study of DFT and XPS with reference to the adsorption of caesium ions in smectites. Comput Mater Sci 14(1):254–260. https://doi.org/10.1016/S0927-0256(98)00116-5

    Article  CAS  Google Scholar 

  18. Loganathan N, Kalinichev A G(2017)Quantifying the mechanisms of site-specific ion exchange at an inhomogeneously charged surface: Case of Cs+/K+ on Hydrated Muscovite Mica.J. Phys. Chem. C121,7829–7836. https://doi.org/10.1021/acs.jpcc.6b13108

  19. Bourg IC, Sposito G (2010) Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media. Environ Sci Technol. https://doi.org/10.1021/es903645a. .44,2085–2091

    Article  PubMed  Google Scholar 

  20. Martins DM, Molinari M, Gonçalves et al (2014) Toward modeling clay mineral nanoparticles: the edge surfaces of pyrophyllite and their interaction with water. J Phys Chem C 118:27308–27317. https://doi.org/10.1021/jp5070853

    Article  CAS  Google Scholar 

  21. Nadeau PH, Wilson MJ, Mchardy WJ et al (1984)Interstratified Clays as Fundamental Particles[J].Science.225(4665)923–925. DOI: https://doi.org/10.1126/science.225.4665.923

  22. Kalinichev AG, Loganathan N, Ngouanawakou BF, Chen Z, Montavon G (2015) MD simulations of Cs+ adsorption on hydrated surfaces of illite, smectite, and interstratified illite/smectite clays. http://hal.in2p3.fr/in2p3-01577718

  23. Chen Z, Montavon G, Kalinichev AG (2015) Cs+-Na+ exchange on interstratified illite/smectite minerals: Experimental study and molecular dynamics simulations. http://hal.in2p3.fr/in2p3-01577784

  24. Nakano M, Kawamura K, Ichikawa Y(2003)Local structural information of Cs in smectite hydrates by means of an EXAFS study and molecular dynamics simulations,Appl. Clay Sci.2315–23. https://doi.org/10.1016/S0169-1317(03)00082-6

  25. Cygan RT, Liang J, Kalinichev AG (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108:1255–1266. https://doi.org/10.1021/jp0363287

    Article  CAS  Google Scholar 

  26. Stixrude L, Peacor DR (2002) First-principles study of illite-smectite and implications for clay mineral systems. Nature 420:165–168. https://doi.org/10.1038/nature01155

    Article  CAS  PubMed  Google Scholar 

  27. Perdew JP, Burke K M. Ernzerhof(1997)Generalized Gradient Approximation Made Simple,Phys. Rev. Lett.77,3865. https://doi.org/10.1103/PhysRevLett.77.3865

  28. Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2009) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys Rev Lett 102:039902. https://doi.org/10.1103/PhysRevLett.100.136406

    Article  CAS  Google Scholar 

  29. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756. https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

  30. Delley B (2002) Hardness conserving semilocal pseudopotentials. Phys Rev B 66:155125. https://doi.org/10.1103/PhysRevB.66.155125

    Article  CAS  Google Scholar 

  31. Delley B (2006) The conductor-like screening model for polymers and surfaces. Mol Simul 32:117–123. https://doi.org/10.1080/08927020600589684

    Article  CAS  Google Scholar 

  32. Li Hai-long, Bian L Wen-ping Hou(2016)Computational study of the RGD–peptide interactions with perovskite-ype BFO-(111) membranes under aqueous conditions,Chemical Physics Letters1–5,655–656. https://doi.org/10.1186/s11671-015-0967-3

  33. Li Hai-long, Dong Fa-qin, Liang Bian (2020) Heterogeneous oxidation mechanism of SO2 on γ-Al2O3 (110) catalyst by H2O2: A first-principle study. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2020.125777. 611,125777

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2018YFC1801105), and State Key Laboratory of NBC Protection for Civilian (SKLNBC2020-09, SKLNBC2019-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanguo Li or Shanqiang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, H., Li, Z. et al. Molecular dynamics and density functional theory simulations of cesium and strontium adsorption on illite/ smectite. J Radioanal Nucl Chem 331, 2983–2992 (2022). https://doi.org/10.1007/s10967-022-08348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08348-4

Keywords

Navigation