Skip to main content
Log in

Porous phytic acid-doped sodium alginate aerogels as the electrode material for the electrosorption of uranium from acidic solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A novel phytic acid-doped sodium alginate aerogel (Alg-PA) was prepared via a simple doping and freeze-drying method and was used as a self-supporting electrode material to remove uranium ions from aqueous solutions. The effects of chemical composition, UO22+ concentration, solution pH, and applied voltage on the adsorption of UO22+ were investigated. Chemical adsorption was found to be the main mechanism of uranium adsorption and the application of voltage can effectively improve the adsorption capacity and adsorption rate in this removal system. The experimental maximum capacity of the Alg-PA electrode was 430.8 mg/g, while the theoretical maximum capacity of Alg-PA was found to be 563.8 mg/g. Moreover, Alg-PA also has a good reusability and selectivity to uranium ions. These advantages make Alg-PA a promising material for extracting of uranium from uranium-containing solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Singh M, Tapadia K, Jhariya D, Sahu P (2021) Evaluation of uranium containing ground water quality and non-carcinogenic risk assessment in inhabitant of Bijapur District of Chhattisgarh, Central India. J Radioanal Nucl Chem 327:939–947. https://doi.org/10.1007/s10967-020-07572-0

    Article  CAS  Google Scholar 

  2. Yu Q, Yuan Y, Feng L, Sun W, Lin K, Zhang J, Zhang Y, Wang H, Wang N, Peng Q (2022) Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. J Hazard Mater 424:127758

    Article  CAS  Google Scholar 

  3. Huang J, Liu Z, Huang D, Jin T, Qian Y (2021) Electrochemical deposition of uranium oxide with an electrocatalytically active electrode using double potential step technique. Chinese Chem Lett in press. https://doi.org/10.1016/j.cclet.2021.11.008

    Article  Google Scholar 

  4. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK, Zheng L, Chai Z, Shi W (2018) Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environ Sci Technol 52:10748–10756. https://doi.org/10.1021/acs.est.8b03711

    Article  CAS  PubMed  Google Scholar 

  5. Zhou J, Zhang X, Zhang Y, Wang D, Zhou H, Li J (2022) Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Sep Purif Technol 283:120172. https://doi.org/10.1016/j.seppur.2021.120172

    Article  CAS  Google Scholar 

  6. Yu S, Pang H, Huang S, Tang H, Wang S, Qiu M, Chen Z, Yang H, Song G, Fu D, Hu B, Wang X (2021) Recent advances in metal-organic framework membranes for water treatment: a review. Sci Total Environ 800:149662. https://doi.org/10.1016/j.scitotenv.2021.149662

    Article  CAS  PubMed  Google Scholar 

  7. Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY (2021) Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 328:1085–1098. https://doi.org/10.1007/s10967-021-07708-w

    Article  CAS  Google Scholar 

  8. Bayramoglu G, Arica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159. https://doi.org/10.1016/j.cherd.2019.04.039

    Article  CAS  Google Scholar 

  9. McHale AP, McHale S (1994) Microbial biosorption of metals: Potential in the treatment of metal pollution. Biotechnol Adv 12:647–652. https://doi.org/10.1016/0734-9750(94)90005-1

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Hsu P-C, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007. https://doi.org/10.1038/nenergy.2017.7

    Article  CAS  Google Scholar 

  11. Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 228:10–29. https://doi.org/10.1016/j.desal.2007.08.005

    Article  CAS  Google Scholar 

  12. Wu Q-Y, Lan J-H, Wang C-Z, Xiao C-L, Zhao Y-L, Wei Y-Z, Chai Z-F, Shi W-Q (2014) Understanding the Bonding Nature of Uranyl Ion and Functionalized Graphene: A Theoretical Study. J PHYS CHEM A 118:2149–2158. https://doi.org/10.1021/jp500924a

    Article  CAS  PubMed  Google Scholar 

  13. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310:711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  14. Cao Y, Li X (2014) Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20:713–727. https://doi.org/10.1007/s10450-014-9615-y

    Article  CAS  Google Scholar 

  15. Jun B-M, Lee H-K, Park S, Kim T-J (2021) Purification of uranium-contaminated radioactive water by adsorption: a review on adsorbent materials. Sep Purif Technol 278:119675. https://doi.org/10.1016/j.seppur.2021.119675

    Article  CAS  Google Scholar 

  16. Huang J, Huang B, Jin T, Liu Z, Huang D, Qian Y (2022) Electrosorption of uranium (VI) from aqueous solution by phytic acid modified chitosan: An experimental and DFT study. Sep Purif Technol 284:120284. https://doi.org/10.1016/j.seppur.2021.120284

    Article  CAS  Google Scholar 

  17. Bi F, Mahmood SJ, Arman M, Taj N, Iqbal S (2007) Physicochemical characterization and ionic studies of sodium alginate from Sargassum terrarium (brown algae). Phys Chem Liq 45:453–461. https://doi.org/10.1080/00319100600745198

    Article  CAS  Google Scholar 

  18. El Khoury D, Goff HD, Berengut S, Kubant R, Anderson GH (2014) Effect of sodium alginate addition to chocolate milk on glycemia, insulin, appetite and food intake in healthy adult men. Eur J Clin Nutr 68:613–618. https://doi.org/10.1038/ejcn.2014.53

    Article  CAS  PubMed  Google Scholar 

  19. Li C, Fang L, Fang K, Liu X, An F, Liang Y, Liu H, Zhang S, Qiao X (2021) Synergistic Effects of alpha olefin sulfonate and sodium alginate on Inkjet printing of cotton/polyamide fabrics. Langmuir 37:683–692. https://doi.org/10.1021/acs.langmuir.0c02723

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Ballester NM, Bataille B, Soulairol I (2021) Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohyd Polym 270:118399. https://doi.org/10.1016/j.carbpol.2021.118399

    Article  CAS  Google Scholar 

  21. Jin T, Huang B, Huang J, He F, Liu Z, Qian Y (2021) A novel poly (amic-acid) modified single-walled carbon nanohorns adsorbent for efficient removal of uranium (VI) from aqueous solutions and DFT study. Colloid Surface A 631:127747. https://doi.org/10.1016/j.colsurfa.2021.127747

    Article  CAS  Google Scholar 

  22. Nita LE, Chiriac AP, Ghilan A, Rusu AG, Tudorachi N, Timpu D (2021) Alginate enriched with phytic acid for hydrogels preparation. Int J Biol Macromol 181:561–571. https://doi.org/10.1016/j.ijbiomac.2021.03.164

    Article  CAS  PubMed  Google Scholar 

  23. Papageorgiou SK, Kouvelos EP, Favvas EP, Sapalidis AA, Romanos GE, Katsaros FK (2010) Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohyd Res 345:469–473. https://doi.org/10.1016/j.carres.2009.12.010

    Article  CAS  Google Scholar 

  24. Chen Z, Zhang S, Ding M, Wang M, Xu X (2021) Construction of a phytic acid-silica system in wood for highly efficient flame retardancy and smoke suppression. Materials 14:4164. https://doi.org/10.3390/ma14154164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Z, Liu C, Dong Z, Dai Y, Xiong G, Liu Y, Wang Y, Wang Y, Liu Y (2020) Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI). Appl Surf Sci 520:146352. https://doi.org/10.1016/j.apsusc.2020.146352

    Article  CAS  Google Scholar 

  26. Hao Y, Sani LA, Ge T, Fang Q (2017) Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel. Appl Surf Sci 419:826–837. https://doi.org/10.1016/j.apsusc.2017.05.079

    Article  CAS  Google Scholar 

  27. Bai Y, Liu R, Wang Y, Xiao H, Liu Y, Yuan G (2019) High ion transport within a freeze-casted gel film for high-rate integrated flexible supercapacitors. ACS Appl Mater Inter 11:43294–43302. https://doi.org/10.1021/acsami.9b16708

    Article  CAS  Google Scholar 

  28. Lin F, Yuan M, Chen Y, Huang Y, Lian J, Qiu J, Xu H, Li H, Yuan S, Zhao Y, Cao S (2019) Advanced asymmetric supercapacitor based on molybdenum trioxide decorated nickel cobalt oxide nanosheets and three-dimensional α-FeOOH/rGO. Electrochim Acta 320:134580. https://doi.org/10.1016/j.electacta.2019.134580

    Article  CAS  Google Scholar 

  29. Wang N, Gao H, Zhang J, Qin Y, Wang D (2019) Phytic acid intercalated graphene oxide for anticorrosive reinforcement of waterborne epoxy resin coating. Polymers (Basel). https://doi.org/10.3390/polym11121950

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang Y, Zhang H, Liu Q, Chen R, Liu J, Yu J, Jing X, Zhang M, Wang J (2018) Polypyrrole modified Fe0-loaded graphene oxide for the enrichment of uranium(vi) from simulated seawater. Dalton T 47:12984–12992. https://doi.org/10.1039/C8DT02819B

    Article  CAS  Google Scholar 

  31. Gao X, Zhao C, Lu H, Gao F, Ma H (2014) Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions. Electrochim Acta 150:188–196. https://doi.org/10.1016/j.electacta.2014.09.160

    Article  CAS  Google Scholar 

  32. Yuan F, Wu C, Cai Y, Zhang L, Wang J, Chen L, Wang X, Yang S, Wang S (2017) Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI). Chem Eng J 322:353–365. https://doi.org/10.1016/j.cej.2017.03.156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (41361088, 41867063) and the Natural Science Foundation of Jiangxi Province (20212BAB214002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianxiang Jin or Yong Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Jin, T., huang, J. et al. Porous phytic acid-doped sodium alginate aerogels as the electrode material for the electrosorption of uranium from acidic solution. J Radioanal Nucl Chem 331, 2795–2804 (2022). https://doi.org/10.1007/s10967-022-08328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08328-8

Keywords

Navigation