Skip to main content
Log in

Preparation of micron-sized alginate-based particles for rare earth adsorption

  • Brief Report
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this brief report, omitting the step of dissolving sodium alginate with water, directly mixing sodium alginate powder with calcium chloride powder sufficiently, and gelatinizing sodium alginate by the impregnation method improve the characteristics of sodium alginate gel which is in the form of jelly and has poor mechanical properties. In this paper, micron-sized gel particles were prepared by slow impregnation method using mixed powder of sodium alginate and calcium chloride. The preparation method is simple and low-cost, and can be used for the recovery of rare earth ions from aqueous solutions. The SAG-2 gel prepared at a mass ratio of sodium alginate to calcium chloride of 1:1 showed the best adsorption performance; the particle size varies from 50 to 200 µm. The adsorption capacities of SAG-2 for La(III), Ce(III), Pr(III), and Nd(III) were 334.1, 349.8, 360.1, and 364.5 mg g−1 at pH = 5. The adsorption equilibrium was reached in 35 min. The kinetic study showed that the adsorption process was chemisorption and the adsorption isotherm was well fitted with the Freundlich model. The adsorption mechanism was explored using FTIR and XPS characterization, indicating that both -OH and -COOH functional groups were involved in adsorption. The desorption of rare earths by different eluents was explored and the recyclability of the adsorbent was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Mancheri NA, Sprecher B, Bailey G, Ge J, Tukker A (2019) Effect of Chinese policies on rare earth supply chain resilience. Resour Conserv Recycl 142:101–112

    Article  Google Scholar 

  2. Jowitt SM, Werner TT, Weng Z, Mudd GM (2018) Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry 13:1–7. https://doi.org/10.1016/j.cogsc.2018.02.008

    Article  Google Scholar 

  3. Maturana HA, Perič IM, Rivas BL, Amalia Pooley S (2011) Interaction of heavy metal ions with an ion exchange resin obtained from a natural polyelectrolyte. Polym Bull 67(4):669–676. https://doi.org/10.1007/s00289-011-0454-7

    Article  CAS  Google Scholar 

  4. Zheng Y, Sun K, Wen N, Rao H, Ye H, Yang B (2023) An all-biomass adsorbent: Competitive removal and correlative mechanism of Cu2+, Pb2+, Cd2+ from multi-element aqueous solutions. Polym Bull 80(12):12619–12640. https://doi.org/10.1007/s00289-022-04665-6

    Article  CAS  Google Scholar 

  5. Zhou J, Meng X, Zhang R, Liu H, Liu Z (2021) Progress on electrodeposition of rare earth metals and their alloys. Electrocatalysis 12(6):628–640. https://doi.org/10.1007/s12678-021-00688-1

    Article  CAS  Google Scholar 

  6. Foong CY, Wirzal MDH, Bustam MA (2020) A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J Mol Liq 297:111793. https://doi.org/10.1016/j.molliq.2019.111793

    Article  CAS  Google Scholar 

  7. Zhu Y, Zheng Y, Wang A (2015) A simple approach to fabricate granular adsorbent for adsorption of rare elements. Int J Biol Macromol 72:410–420. https://doi.org/10.1016/j.ijbiomac.2014.08.039

    Article  CAS  PubMed  Google Scholar 

  8. Artiushenko O, da Silva RF, Zaitsev V (2023) Recent advances in functional materials for rare earth recovery: A review. Sustain Mater Technol 37:e00681. https://doi.org/10.1016/j.susmat.2023.e00681

    Article  CAS  Google Scholar 

  9. Brown RM, Mirkouei A, Reed D, Thompson V (2023) Current nature-based biological practices for rare earth elements extraction and recovery: Bioleaching and biosorption. Renew Sustain Energy Rev 173:113099. https://doi.org/10.1016/j.rser.2022.113099

    Article  CAS  Google Scholar 

  10. Hosomomi Y, Baba Y, Kubota F, Kamiya N, Goto M (2013) Biosorption of rare earth elements by Escherichia coli. J Chem Eng Jpn 46(7):450–454. https://doi.org/10.1252/jcej.13we031

    Article  CAS  Google Scholar 

  11. Kelly-Vargas K, Cerro-Lopez M, Reyna-Téllez S, Bandala ER, Sánchez-Salas JL (2012) Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys Chem Earth 37:26–29

    Article  Google Scholar 

  12. Lakshmi S, Suvedha K, Sruthi R, Lavanya J, Varjani S, Nakkeeran E (2020) Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered 11:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park DM, Middleton AC, Smith RC et al (2020) A biosorption-based approach for selective extraction of rare earth elements from coal byproducts. Sep Purif Technol 241:116726

    Article  CAS  Google Scholar 

  14. Sakamoto N, Kano N, Imaizumi H (2008) Biosorption of uranium and rare earth elements using biomass of algae. Bioinorg Chem Appl

  15. Tunali M, Yenigun O (2021) Biosorption of Ag+ and Nd3+ from single- and multi-metal solutions (Ag+, Nd3+, and Au3+) by using living and dried microalgae. J Mater Cycles Waste Manage 23:764–777

    Article  CAS  Google Scholar 

  16. More AP (2023) Superabsorbent composites: a review. Polym Bull. https://doi.org/10.1007/s00289-023-04809-2

    Article  Google Scholar 

  17. Wang R, Zheng Z (2010) Rare earth complexes with carboxylic acids, polyaminopolycarboxylic acids, and amino acids. In 

  18. Fomina M, Gadd GM (2014) Biosorption: Current perspectives on concept, definition and application. Biores Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  CAS  Google Scholar 

  19. Gao X, Guo C, Hao J, Zhao Z, Long H, Li M (2020) Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. Int J Biol Macromol 164:4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046

    Article  CAS  PubMed  Google Scholar 

  20. Ahn Y, Kim H, Kwak SY (2019) Self-reinforcement of alginate hydrogel via conformational control. Eur Polymer J 116:480–487. https://doi.org/10.1016/j.eurpolymj.2019.03.017

    Article  CAS  Google Scholar 

  21. Idris A, Ismail NSM, Hassan N, Misran E, Ngomsik AF (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J Ind Eng Chem 18(5):1582–1589. https://doi.org/10.1016/j.jiec.2012.02.018

    Article  CAS  Google Scholar 

  22. Lv X, Jiang G, Xue X et al (2013) Fe0-Fe3O4 nanocomposites embedded polyvinyl alcohol/sodium alginate beads for chromium (VI) removal. J Hazard Mater 262:748–758. https://doi.org/10.1016/j.jhazmat.2013.09.036

    Article  CAS  PubMed  Google Scholar 

  23. Patiño-Ruiz D, Bonfante H, De Ávila G, Herrera A (2019) Adsorption kinetics, isotherms and desorption studies of mercury from aqueous solution at different temperatures on magnetic sodium alginate-thiourea microbeads. Environmental Nanotechnology, Monitoring & Management 12:100243. https://doi.org/10.1016/j.enmm.2019.100243

    Article  Google Scholar 

  24. Qamar SA, Qamar M, Basharat A, Bilal M, Cheng H, Iqbal HMN (2022) Alginate-based nano-adsorbent materials – bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere 288:132618. https://doi.org/10.1016/j.chemosphere.2021.132618

    Article  CAS  PubMed  Google Scholar 

  25. Soltani RDC, Khorramabadi GS, Khataee AR, Jorfi S (2014) Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J Taiwan Inst Chem Eng 45(3):973–980. https://doi.org/10.1016/j.jtice.2013.09.014

    Article  CAS  Google Scholar 

  26. Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake. Langmuir : the ACS journal of surfaces and colloids 30(1):120–131. https://doi.org/10.1021/la402778x

    Article  CAS  PubMed  Google Scholar 

  27. Duan G, Yang Y, Cui Y (2006) Study on macromolecular rare earth complexes (IV)—Synthesis, characterization and fluorescent properties of rare earth complexes with polymethyl acrylic acid. Synth React Inorg, Met-Org, Nano-Met Chem 36(6):459–463. https://doi.org/10.1080/15533170600777895

    Article  CAS  Google Scholar 

  28. Gao X, Liu J, Li M et al (2020) Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chem Eng J 385:123897. https://doi.org/10.1016/j.cej.2019.123897

    Article  CAS  Google Scholar 

  29. Ijagbemi CO, Baek MH, Kim DS (2010) Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal: Equilibrium, kinetics, thermodynamics and regeneration studies. J Hazard Mater 174(1–3):746–755. https://doi.org/10.1016/j.jhazmat.2009.09.115

    Article  CAS  PubMed  Google Scholar 

  30. Smitha B, Sridhar S, Khan AA (2005) Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur Polymer J 41(8):1859–1866. https://doi.org/10.1016/j.eurpolymj.2005.02.018

    Article  CAS  Google Scholar 

  31. Sutirman ZA, Sanagi MM, Wan Aini WI (2021) Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. Int J Biol Macromol 174:216–228. https://doi.org/10.1016/j.ijbiomac.2021.01.150

    Article  CAS  PubMed  Google Scholar 

  32. Gagné OC, Hawthorne FC (2017) Empirical Lewis acid strengths for 135 cations bonded to oxygen. Acta Crystallogr B Struct Sci Cryst Eng Mater 73(Pt 5):956–961. https://doi.org/10.1107/s2052520617010988

    Article  CAS  PubMed  Google Scholar 

  33. Bala T, Prasad BLV, Sastry M, Kahaly MU, Waghmare UV (2007) Interaction of different metal ions with carboxylic acid group: A quantitative study. J Phys Chem A 111(28):6183–6190. https://doi.org/10.1021/jp067906x

    Article  CAS  PubMed  Google Scholar 

  34. Baraka A, Hall PJ, Heslop MJ (2007) Preparation and characterization of melamine–formaldehyde–DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater. React Funct Polym 67(7):585–600. https://doi.org/10.1016/j.reactfunctpolym.2007.01.015

    Article  CAS  Google Scholar 

  35. Roosen J, Binnemans K (2014) Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J Mater Chem A 2(5):1530–1540. https://doi.org/10.1039/C3TA14622G

    Article  CAS  Google Scholar 

  36. Daemi H, Barikani M (2012) Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica 19(6):2023–2028. https://doi.org/10.1016/j.scient.2012.10.005

    Article  CAS  Google Scholar 

  37. Forgionny A, Acelas NY, Ocampo-Pérez R, Padilla-Ortega E, Leyva-Ramos R, Flórez E (2021) Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems: A combined experimental and computational study. Environ Sci Pollut Res 28(18):23204–23219. https://doi.org/10.1007/s11356-020-11721-z

    Article  CAS  Google Scholar 

  38. Chen J, Zhang W, Li X (2016) Adsorption of Cu(II) ion from aqueous solutions on hydrogel prepared from Konjac glucomannan. Polym Bull 73(7):1965–1984. https://doi.org/10.1007/s00289-015-1588-9

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by National Key R&D Program of China No. 2017YFF0106006 and Beijing Natural Science Foundation No. 8172033.

Author information

Authors and Affiliations

Authors

Contributions

Yiwen Wang: Conceptualization, Methodology, Writing-original draft preparation. Aijun Gong: Project administration, Supervision, Funding acquisition. Lina Qiu: Data analysis. Yuzhen Bai: Instrumental characterization. Yang Liu: Data analysis. Ge Gao: Data analysis. Weiyu Zhao: Data curation.

Corresponding authors

Correspondence to Aijun Gong or Lina Qiu.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1097 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gong, A., Qiu, L. et al. Preparation of micron-sized alginate-based particles for rare earth adsorption. Colloid Polym Sci 302, 1001–1010 (2024). https://doi.org/10.1007/s00396-024-05241-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-024-05241-2

Keywords

Navigation