Skip to main content
Log in

Synthesis and in vivo evaluation of 18F-cPNA and Dendrimer-PNA conjugate for amplification pretargeting

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amplification pretargeting strategies have great potential in nuclear medicine to increase the tumoral radioactivity concentration compared to conventional pretargeting. In this work, the dendrimer polyamidoamine generation 4 (PAMAM G4) was conjugated to multiple copies of peptide nucleic acid (PNA) as a signal amplification platform, which could combine with the antibody of CC49-cPNA and the tracer of 18F labeled complementary peptide nucleic acid (18F-cPNA) in biodistribution experiments to determine the signal amplification effect in vivo. The mice in the Amplification Group exhibited expected tumoral uptake (3.21 ± 0.77%ID/g), more than double that in the Pretargeting Group (1.21 ± 0.03%ID/g). Therefore, this work confirmed the signal amplification effect of dendrimer-PNA in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodwin DA et al (1997) Pretargeting - General principles. Cancer-Am Cancer Soc 80:2675–2680

    CAS  Google Scholar 

  2. Goodwin DA et al (1988) Pre-Targeted Immunoscintigraphy of Murine Tumors with Indium-111-Labeled Bifunctional Haptens. J Nucl Med 29:226–234

    CAS  PubMed  Google Scholar 

  3. Hnatowich DJ et al (1987) Investigations of avidin and biotin for imaging applications. J Nucl Med 28:1294–1302

    CAS  PubMed  Google Scholar 

  4. Dou SP et al (2014) Differentiation between temporary and real non-clearability of biotinylated IgG antibody by avidin in mice.Front Pharmacol.5

  5. Reardan DT et al (1985) Antibodies against metal chelates. Nature 316:265–268

    Article  CAS  Google Scholar 

  6. Kuijpers WHA et al (1993) Specific Recognition of Antibody Oligonucleotide Conjugates by Radiolabeled Antisense Nucleotides - a Novel-Approach for 2-Step Radioimmunotherapy of Cancer. Bioconjug Chem 4:94–102

    Article  CAS  Google Scholar 

  7. Chang CH et al (2002) Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol Cancer Ther 1:553–563

    CAS  PubMed  Google Scholar 

  8. Bos ES et al (1994) In-Vitro Evaluation of DNA-DNA Hybridization as a 2-Step Approach in Radioimmunotherapy of Cancer. Cancer Res 54:3479–3486

    CAS  PubMed  Google Scholar 

  9. Agard NJ et al (2005) A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems (vol 126, pg 15046, 2004). J Am Chem Soc 127:11196–11196

    Article  CAS  Google Scholar 

  10. Rossin R et al (2010) In Vivo Chemistry for Pretargeted Tumor Imaging in Live Mice. Angew Chem Int Edit 49:3375–3378

    Article  CAS  Google Scholar 

  11. Chen X et al (2008) Synthesis and in vitro characterization of a dendrimer-MORF conjugate for amplification pretargeting. Bioconjug Chem 19:1518–1525

    Article  CAS  Google Scholar 

  12. Wang Y et al (2001) Pretargeting with amplification using polymeric peptide nucleic acid. Bioconjug Chem 12:807–816

    Article  CAS  Google Scholar 

  13. Agrawal S et al (1995) Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 28:7–16

    Article  CAS  Google Scholar 

  14. Karkare S et al (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biot 71:575–586

    Article  CAS  Google Scholar 

  15. Smolina IV et al (2003) Sequence-universal recognition of duplex DNA by oligonucleotides via pseudocomplementarity and helix invasion. Chem Biol 10:591–595

    Article  CAS  Google Scholar 

  16. Briones C et al (2012) Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 402:3071–3089

    Article  CAS  Google Scholar 

  17. Ghobril C et al (2012) Dendrimers in nuclear medical imaging. New J Chem 36:310–323

    Article  CAS  Google Scholar 

  18. Kolhe P et al (2003) Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharmaceut 259:143–160

    Article  CAS  Google Scholar 

  19. Sekowski S et al (2011) Interaction of polyamidoamine (PAMAM) succinamic acid dendrimers generation 4 with human serum albumin. Spectrochim Acta A 81:706–710

    Article  CAS  Google Scholar 

  20. He J et al (2003) Pharmacokinetics in mice of four oligomer-conjugated polymers for amplification targeting. Cancer Biother Radio 18:941–947

    CAS  Google Scholar 

  21. Thor A et al (1986) Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3. Cancer Res 46:3118–3124

    CAS  PubMed  Google Scholar 

  22. Loy TS et al (1993) Reactivity of B72.3 with adenocarcinomas. An immunohistochemical study of 476 cases. Cancer-Am Cancer Soc 72:2495–2498

    CAS  Google Scholar 

  23. Cai L et al (2021) Research on preparation and in vitro evaluation of the dendrimer-peptide nuclear acid conjugate for amplification pretargeting. J Label Compd Rad 64:428–439

    Article  CAS  Google Scholar 

  24. Harris SG et al (2003) Growth of endothelial cells on microfabricated silicon nitride membranes for an in vitro model of the blood-brain barrier. Biotechnol Bioproc E 8:246–251

    Article  CAS  Google Scholar 

  25. Zhang MR et al (2007) [F-18]Fluoroalkyl agents: Synthesis, reactivity and application for development of PET ligands in molecular imaging. Curr Top Med Chem 7:1817–1828

    Article  CAS  Google Scholar 

  26. Mukai H et al (2014) Quantitative evaluation of the improvement in the pharmacokinetics of a nucleic acid drug delivery system by dynamic PET imaging with F-18-incorporated oligodeoxynucleotides. J Control Release 180:92–99

    Article  CAS  Google Scholar 

  27. Stein CA et al (2005) Antisense strategies for oncogene inactivation. Semin Oncol 32:563–572

    Article  CAS  Google Scholar 

  28. Lendvai G et al (2008) Biodistribution of Ga-68-labeled LNA-DNA mixmer antisense oligonucleotides for rat Chromogranin-A. Oligonucleotides 18:33–49

    Article  CAS  Google Scholar 

  29. Lendvai G et al (2005) Biodistribution of Ga-68-labelled phosphodiester, phosphorothioate, and 2 ‘-O-methyl phosphodiester oligonucleotides in normal rats. Eur J Pharm Sci 26:26–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11705268).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxia Liu or Lan Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wang, H., He, S. et al. Synthesis and in vivo evaluation of 18F-cPNA and Dendrimer-PNA conjugate for amplification pretargeting. J Radioanal Nucl Chem 331, 2895–2902 (2022). https://doi.org/10.1007/s10967-022-08289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08289-y

Keywords

Navigation