Skip to main content
Log in

Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nucleic acid analogs and mimics are commonly the modifications of native nucleic acids at the nucleobase, the sugar ring, or the phosphodiester backbone. Many forms of promising nucleic acid analogs and mimics are available, such as locked nucleic acids (LNAs), peptide nucleic acids (PNAs), and morpholinos. LNAs, PNAs, and morpholinos can form both duplexes and triplexes and have improved biostability. They have become a general and versatile tool for DNA and RNA recognition. LNA is a general and versatile tool for specific, high-affinity recognition of single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA). LNA can be used for designing LNA oligoes for hybridization studies or as real time polymerase chain reaction probes in the form of Taqman probes. LNA also has therapeutic and diagnostic applications. PNA is another type of DNA analog with neutral charge. The extreme stability of PNA makes it an ideal candidate for the antisense and antigene application. PNA is used as probe for gene cloning, mutation detection, and in homologous recombination studies. It was also used to design transcription factor decoy molecules for target gene induction. Morpholino, another structural type, was devised to circumvent cost problems associated with DNA analogs. It has become the premier knockdown tool in developmental biology due to its cytosolic delivery in the embryos by microinjection. Thus, the nucleic acid analogs provide an advantage to design and implementation, therapies, and research assays, which were not implemented due to limitations associated with standard nucleic acids chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armitage B, Ly D, Koch T, Frydenlund H, Orum H, Schuster GB (1998) Hairpin-forming peptide nucleic acid oligomers. Biochemistry 37:9417–9425

    CAS  PubMed  Google Scholar 

  • Betts L, Josey JA, Veal JM, Jordan SR (1995) A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science 270:1838–1841

    CAS  Google Scholar 

  • Brown SC, Thomson SA, Veal JM, Davis DG (1994) NMR solution structure of a peptide nucleic acid complexed with RNA. Science 265:777–780

    CAS  PubMed  Google Scholar 

  • Childs JL, Disney MD, Turner DH (2002) Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Proc Natl Acad Sci U S A 99:11091–11096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen U, Jacobsen N, Rajwanshi VK, Wengel J, Koch T (2001) Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: studies of LNA–DNA and DNA–DNA interactions. Biochem J 354:481–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crinelli R, Bianchi M, Gentilini L, Magnani M (2002) Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res 30:2435–2443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cutrona G, Carpaneto EM, Ulivi M, Roncella S, Landt O, Ferrarini M, Boffa LC (2000) Effects in live cells of a c-myc anti-gene PNA linked to a nuclear localization signal. Nat Biotechnol 18:300–303

    CAS  PubMed  Google Scholar 

  • Demidov VV, Frank-Kamenetskii MD (1999) PNA directed genome rare cutting. In: Nielsen PE, Egholm M (eds) Peptide nucleic acids: protocols & applications, 2nd edn. Horizon Scientific, Wymondham, UK, pp 187–206

    Google Scholar 

  • Demidov VV, Frank-Kamenetskii MD (2001) Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion. Methods 23:108–122

    CAS  PubMed  Google Scholar 

  • Demidov VV, Frank-Kamenetskii MD (2002) PNA openers and their applications. Methods Mol Biol 208:119–130

    CAS  PubMed  Google Scholar 

  • Demidov V, Frank-Kamenetskii MD, Egholm M, Buchardt O, Nielsen PE (1993) Sequence selective double strand DNA cleavage by PNA targeting using nuclease S1. Nucleic Acids Res 21:2103–2107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demidov VV, Potaman VN, Frank-Kamenetskii MD, Egholm M, Buchard O, Sönnichsen SH, Nielsen PE (1994) Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 48:1310–1313

    CAS  PubMed  Google Scholar 

  • Demidov VV, Broude NE, Lavrentieva-Smolina IV, Kuhn H, Frank-Kamenetskii MD (2001a) An artificial primosome: design, function, and applications. Chembiochem 2:133–139

    CAS  PubMed  Google Scholar 

  • Demidov VV, Kuhn H, Lavrentieva-Smolina IV, Frank-Kamenetskii MD (2001b) Peptide nucleic acid-assisted topological labeling of duplex DNA. Methods 23:123–131

    CAS  PubMed  Google Scholar 

  • Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365:566–568

    CAS  PubMed  Google Scholar 

  • Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93

    CAS  PubMed  Google Scholar 

  • Elayadi AN, Braasch DA, Corey DR (2002) Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. Biochemistry 41:9973–9981

    CAS  PubMed  Google Scholar 

  • Eriksson M, Nielsen PE (1996) Solution structure of a peptide nucleic acid-DNA duplex. Nat Struct Biol 3:410–413

    CAS  PubMed  Google Scholar 

  • Falkiewicz B (1999) Peptide nucleic acids and their structural modification. Acta Biochimica Polonica 46:509–529

    CAS  PubMed  Google Scholar 

  • Fiandaca MJ, Hyldig-Nielsen JJ, Gildae BD, Coull JM (2001) Self reporting PNA/DNA primers for PCR analysis. Genome Res 11:609–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser GL, Holmgren J, Clarke PBS, Wahlestedt C (2000) Antisense inhibition of delta-opioid receptor gene function in vivo by peptide nucleic acids. Mol Pharmacol 57:725–731

    CAS  PubMed  Google Scholar 

  • Ganesh KN, Nielsen PE (2000) Peptide nucleic acids analogs and derivatives. Curr Org Chem 4:931–943

    CAS  Google Scholar 

  • Gotfredsen CH, Schultze P, Feigon J (1998) Solution structure of an intramolecular pyrimidine–purine–pyrimidine triplex containing an RNA third strand. J Am Chem Soc 120:4281–4289

    CAS  Google Scholar 

  • Hamilton SE, Simmons CG, Kathiriya IS, Corey DR (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 6:343–351

    CAS  PubMed  Google Scholar 

  • Hudziak RM, Barofsky E, Barofsky DF, Weller DL, Huang SB, Weller DD (1996) Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 6:267–272

    CAS  PubMed  Google Scholar 

  • Hyrup B, Nielsen PE (1996) Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg Med Chem 4:5–23

    CAS  PubMed  Google Scholar 

  • Izvolsky KI, Demidov VV, Bukanov NO, Frank-Kamenetskii MD (1998) Yeast artificial chromosome segregation from host chromosomes with similar lengths. Nucleic Acids Res 26:5011–5012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jepsen JS (2004) Locked nucleic acid (LNA) as cancer-therapeutic agent. Dan Med Bull 51:139

    Google Scholar 

  • Jensen KK, Orum H, Nielsen PE, Norden B (1997) Hybridization kinetics of peptide nucleic acids (PNA) with DNA and RNA studied with BIAcore technique. Biochemistry 36:5072–5077

    CAS  PubMed  Google Scholar 

  • Kang H, Chou PJ, Johnson WC Jr, Weller D, Huang SB, Summerton JE (1992) Stacking interactions of ApA analogues with modified backbones. Biopolymers 32:1351–1363

    CAS  PubMed  Google Scholar 

  • Kuhn H, Demidov VV, Coull JM, Fiandaca MJ, Gildea BD, Frank-Kamenetskii MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. J Am Chem Soc 124:1097–1103

    CAS  PubMed  Google Scholar 

  • Kurreck J, Wyszko E, Gillenand C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691

    CAS  PubMed  Google Scholar 

  • Lohse J, Dahl O, Nielsen PE (1999) Double duplex invasion by peptide nucleic acid: a general principle for sequence specific targeting of double stranded DNA. Proc Natl Acad Sci U S A 96:11804–11808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz MJ, Benner SA, Hein S, Breipohl G, Uhlmann E (1997) Recognition of uncharged polyamide-linked nucleic acid analogs by DNA polymerases and reverse transcriptases. J Am Chem Soc 119:3177–3178

    CAS  Google Scholar 

  • Malvy C, Harel-Bellan A, Pritchard LL (1999) Triple helix forming oligonucleotides. Springer, Berlin Heidelberg New York

    Google Scholar 

  • McTigue PM, Peterson RJ, Kahn JD (2004) Sequence-dependent thermodynamic parameters for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry 43:5388–5405

    CAS  PubMed  Google Scholar 

  • Misra HS, Pandey PK, Modak MJ, Vinayak R, Pandey VN (1998) Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. Biochemistry 37:1917–1925

    CAS  PubMed  Google Scholar 

  • Mologni L, Nielsen PE, Gambacorti-Passerini C (1999) In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem Biophys Res Commun 264:537–543

    CAS  PubMed  Google Scholar 

  • Nastruzzi C, Cortesi R, Esposito E, Gambari R, Borgatti M, Bianchi N, Feriotto G, Mischiati C (2000) Liposomes as carriers for DNA–PNA hybrids. J Control Release 68:237–249

    CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M (1999) Peptide nucleic acid (PNA): protocols and applications. Horizon Scientific, Norfolk

    Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    CAS  PubMed  Google Scholar 

  • Norton JC, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996) Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 14:615–619

    CAS  PubMed  Google Scholar 

  • Obika S, Hemamayi R, Masuda T, Sugimoto T, Nakagawa S, Mayumi T, Imanishi T (2001) Inhibition of ICAM-1 gene expression by antisense 2′, 4′-BNA oligonucleotides. Nucleic Acids Res Suppl 1:145–146

    Google Scholar 

  • Orum H, Nielsen PE, Egholm M, Berg RH, Buchardt O, Stanley C (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res 21:5332–5336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orum H, Jakobsev MH, Koch T, Vuust J, Borre MB (1999) Detection of the Factor V Leiden mutation by direct allele-specific hybridization of PCR amplicons to photo immobilized locked nucleic acids. Clin Chem 45:1898–1905

    CAS  PubMed  Google Scholar 

  • Partridge M, Vincent A, Matthews P, Puma J, Stein D, Summerton J (1996) A simple method for delivering morpholino antisense oligos into the cytoplasm of cells. Antisense Nucleic Acid Drug Dev 6:169–175

    CAS  PubMed  Google Scholar 

  • Perry-O’Keefe H, Yao XW, Coull JM, Fuchs M, Egholm M (1996) Peptide nucleic acid pre-gel hybridization: an alternative to Southern hybridization. Proc Natl Acad Sci U S A 93:14670–14675

    PubMed  PubMed Central  Google Scholar 

  • Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    CAS  PubMed  Google Scholar 

  • Petersen M, Nielsen CB, Nielsen KE, Jensen GA, Bondensgaard K, Singh SK, Rajwanshi VK, Koshkin AA, Dahl BM, Wengel J, Jacobsen JP (2000) The conformations of locked nucleic acids (LNA). J Mol Recognit 13:44–53

    CAS  PubMed  Google Scholar 

  • Pooga M, Soomets U, Hallbrink M, Valkna A, Saar K, Rezaei K, Kahl U, Hao JX, Xu XJ, Wiesenfeld-Hallin Z, Hokfelt T, Bartfai T, Langel U (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 16:857–861

    CAS  PubMed  Google Scholar 

  • Rasmussen H, Kastrup JS, Nielsen JN, Nielsen JM, Nielsen PE (1997) Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 Å resolution. Nat Struct Biol 4:98–101

    CAS  PubMed  Google Scholar 

  • Ray A, Norden B (2000) Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J 14:1041–1060

    CAS  PubMed  Google Scholar 

  • Santa Lucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95:1460–1465

    CAS  Google Scholar 

  • Simeonov A, Nikiforov TT (2002) Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res 30:91

    Google Scholar 

  • Singh SK, Nielsen P, Koshkin A, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Comm 4:455–456

    Google Scholar 

  • Srikanta S, Nilsson L (1998) Molecular dynamics of duplex systems involving PNA: structural and dynamical consequences of the nucleic acid backbone. J Am Chem Soc 120:619–631

    Google Scholar 

  • Summerton J (1989) Uncharged nucleic acid analogs for therapeutic and diagnostic applications: oligomers assembled from ribose-derived subunits. In Brakel C (ed) Discoveries in antisense nucleic acids. Portfolio, Woodlands, TX, pp 71–80

    Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase-H independent structural type. Biochim Biophys Acta 1489:141–158

    CAS  PubMed  Google Scholar 

  • Taylor MF, Paulauskis JD, Weller DD, Kobzik L (1996) In vitro efficacy of morpholino-modified antisense oligomers directed against tumor necrosis factor alpha mRNA. J Biol Chem 271:17445–17452

    CAS  PubMed  Google Scholar 

  • Tomac S, Sarkar M, Ratilainen T, Wittung P, Nielsen PE, Norden B, Graslund A (1996) Ionic effects on the stability and conformation of peptide nucleic acid complexes. J Am Chem Soc 118:5544–5552

    CAS  Google Scholar 

  • Veselkov AG, Demidov VV, Frank-Kamenetskii MD, Nielsen PE (1996) PNA as a rare genome-cutter. Nature 379:214

    CAS  PubMed  Google Scholar 

  • Vester B, Lundberg, LB, Sørensen MD, Babu BR, Douthwaite S, Wengel J (2002) LNAzymes: incorporation of LNA-type monomers into DNAzymes markedly increases RNA cleavage. J Am Chem Soc 124:13682–13683

    CAS  PubMed  Google Scholar 

  • Wang G, Xiaoxin SXU (2004) Peptide nucleic acid (PNA) binding-mediated gene regulation. Cell Res 14:111–116

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Karkare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkare, S., Bhatnagar, D. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71, 575–586 (2006). https://doi.org/10.1007/s00253-006-0434-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0434-2

Keywords

Navigation