Skip to main content
Log in

ICP-OES based methodology for determination of critical elements in U3Si2 matrix

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This manuscript deals with the development of ICP-OES based methodology for the determination critical elements: B, Cd, Eu, Sm, Gd and Dy in U3Si2 matrix. The sample was dissolved in HNO3 with catalytic amount of HF. To avoid spectral interference of uranium, five contacts of TOPO-CCl4 have been given for preferential separation of U, leaving behind the critical elements into the aqueous phase. Though measurable quantity of Si was also co-extracted with U into the organic phase; however, the critical elements remained in aqueous phase. Five contacts of organic phase were found to be sufficient in bringing down concentration of U below tolerance level in aqueous raffinate. This methodology was validated using synthetic samples. The optimization was done by choosing interference free analytical lines of the analytes, determination of detection limits, linear dynamic range, sensitivity and precision. Actual samples were analyzed using the optimized methodology and the results were found to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shaimerdenov AA, Nakipov DA, Arinkin FM, Gizatulin SK, Chakrov PV, Kenzhin YA (2018) The 50th anniversary of the WWR-K research reactor. Phys Atomic Nuclei 81(10):1408–1411

    Article  CAS  Google Scholar 

  2. Suresh Kumar KV, Babu A, Anandapadmanaban B, Srinivasan G (2011) Twenty five years of operating experience with the fast breeder test reactor. Energy Procedia 7:323–332

    Article  Google Scholar 

  3. Kröger W, Sornette D, Ayoub A (2020) Towards safer and more sustainable ways for exploiting nuclear power. World J Nucl Sci Technol 10:91–115

    Article  Google Scholar 

  4. Sasidharana K, Khatria DC, Singh K, Srivastav AP (2006) Refurbishment and core conversion of the Apsara reactor. Nucl Eng Des 236(7–8):784–795

    Article  Google Scholar 

  5. Sinha VP, Mishra GP, Pal S, Khan KB, Hegde PV, Prasad GJ (2008) Development of powder metallurgy technique for synthesis of U3Si2 dispersoid. J Nucl Mater 383(1–2):196–200

    Article  CAS  Google Scholar 

  6. Sinha VP, Hegde PV, Prasad GJ, Mishra GP, Pal S (2008) Development of high density uranium compounds and alloys as dispersion fuel for research and test reactors. Trans Indian Inst Met 61(2–3):115–120

    Article  CAS  Google Scholar 

  7. Finlay MR, Hofman GL, Snelgrove JL (2004) Irradiation behaviour of uranium silicide compounds. J Nucl Mater 325(2–3):118–128

    Article  CAS  Google Scholar 

  8. Harp JM, Lessing PA, Hoggan RE (2015) Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation. J Nucl Mater 466:728–738

    Article  CAS  Google Scholar 

  9. Omidifard P, Pirouzmand A, Hadad K, Şahin S (2020) Analysis of loss of cooling and loss of coolant severe accident scenarios in VVER-1000/V446 spent fuel pool. Ann Nucl Eng 138:107205

    Article  CAS  Google Scholar 

  10. Wu X, Li W, Zhang Y, Tian W, Su G, Qiu S (2014) Analysis of the loss of pool cooling accident in a PWR spent fuel pool with MAAP5. Ann Nucl Eng 72:198–213

    Article  CAS  Google Scholar 

  11. Sanchez-Saez F, Carlos S, Felipe J, An V, Sánchez I, Martorell S (2020) Uncertainty analysis of a loss of cooling and loss of coolant accident in a spent fuel pool using TRACE. Prog Nucl Eng 124:103345

    Article  CAS  Google Scholar 

  12. Setty DS, Kapoor K, Saibaba N (2017) Nuclear fuel cycle-developments and challenges in fuel fabrication technology in India. Prog Nucl Eng 101:100–117

    Article  CAS  Google Scholar 

  13. Vrinda Devi KV, Sengupta A, Somayajulu PS, Khan KB (2017) Characterisation of nuclear fuel by spectroscopic evaluation of alpha autoradiographs. J Radioanal Nucl Chem 314(1):259–271

    Article  CAS  Google Scholar 

  14. Sengupta A, Rajeswari B, Kadam RM, Godbole SV (2012) Development of an analytical methodology for the determination of trace metal constituents in U-Zr alloy by ICP-AES. Atom Spectrosc 33(2):48–52

    Article  CAS  Google Scholar 

  15. Sengupta A, Rajeswari B, Kadam RM, Acharya R (2011) Determination of trace elements in carbon steel by inductively coupled plasma atomic emission spectrometry. Atom Spectrosc 32(5):200–205

    Article  CAS  Google Scholar 

  16. Karadag M, Yücel H, Budak MG (2007) Measurement of thermal neutron cross section and resonance integral for (n, γ) reaction in 152Sm. Ann Nucl Eng 34(3):188–193

    Article  CAS  Google Scholar 

  17. Talamo A (2006) Effects of the burnable poison heterogeneity on the long term control of excess of reactivity. Ann Nucl Eng 33(9):794–803

    Article  CAS  Google Scholar 

  18. Igashira M, Ohsaki T (2002) Neutron economy and nuclear data for transmutation of long-lived fission products. Prog Nucl Eng 40(3–4):555–560

    Article  CAS  Google Scholar 

  19. Şahin S, Mehmet H, Adem Ş, Tawfik A, Al-Kusayerc A (2009) Criticality investigations for the fixed bed nuclear reactor using thorium fuel mixed with plutonium or minor actinides. Ann Nucl Eng 36(8):1032–1038

    Article  Google Scholar 

  20. Sengupta A, Rajeswari B, Kadam RM (2020) Development of an AES based analytical method for the determination of trace metallic impurities in uranium silicide dispersion fuel: from precursors to end products. J Anal Atom Spectrom. https://doi.org/10.1039/C9JA00321E

    Article  Google Scholar 

  21. Sengupta A, Rajeswari B, Adya VC, Kadam RM (2019) ICP-AES characterization of PHWR irradiated thoria bundles for fission products. At Spec 40(4):127–132

    Article  CAS  Google Scholar 

  22. Pathak S, Sengupta A (2017) Development of ICP-AES-based methodology for the determination of trace metallic constituents in Zr-Nb alloy. At Spectrosc 38(6):174–185

    Article  CAS  Google Scholar 

  23. Adya VC, Sengupta A, Thulasidas SK, Natarajan V (2016) Development of CCD based ICP-AES method for the direct determination of phosphorous and sulphur in U, Th and Zr matrices. J Radioanal Nucl Chem 307(2):1489–1497

    Article  CAS  Google Scholar 

  24. Sengupta A, Adya VC, Godbole SV (2012) Development of a methodology for the determination of americium and thorium by ICP-AES and their inter-element effect. J Radioanal Nucl Chem 292(3):1259–1264

    Article  CAS  Google Scholar 

  25. Sengupta A, Adya VC, Kumar M, Thulasidas SK, Godbole SV, Manchanda VK (2011) ICP-AES determination of trace metallic elements in plutonium samples containing sizeable amounts of americium. Atom Spectrosc 32(2):49–55

    Article  CAS  Google Scholar 

  26. Sengupta A, Thulasidas SK, Natarajan V (2014) Study on the spectral interference of thorium on critical elements and rare earths by CCD-based ICP-AES. At Spectrosc 35(5):213–222

    Article  CAS  Google Scholar 

  27. Adya VC, Sengupta A, Godbole SV (2014) Study of the spectral interferences of zirconium on other analytes in the analysis of nuclear materials by CCD-based ICP-AES. At Spectrosc 35(1):25–32

    Article  CAS  Google Scholar 

  28. Sengupta A, Adya VC (2014) Determination of analytes at trace level in uranium matrix by ICP-AES without chemical/physical separation. J Radioanal Nucl Chem 299:2023–2026

    Article  CAS  Google Scholar 

  29. Sengupta A, Adya VC, Seshagiri TK, Godbole SV (2013) Exploration of CCD-based ICP-AES for studying spectral interferences of uranium on other analytes. At Spectrosc 34(2):53–58

    Article  CAS  Google Scholar 

  30. Sengupta A, Kulkarni MJ, Godbole SV (2011) Analytical application of DHOA for the determination of trace metallic constituents in U based fuel materials by ICP-AES. J Radioanal Nucl Chem 289(3):961–965

    Article  CAS  Google Scholar 

  31. Sengupta A, Ippili T, Jayabun S, Singh M, Thulasidas SK (2016) ICP-AES determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA: a comparative study. J Radioanal Nucl Chem 310:59–67

    Article  CAS  Google Scholar 

  32. Sengupta A, Kulkarni MJ, Godbole SV, Natarajan V, Pathak PN (2014) Analytical application of DHOA for the determination of trace metallic constituents in Pu-based fuel materials by ICP-AES. At Spectrosc 35(2):60–64

    Article  CAS  Google Scholar 

  33. Jayabun S, Pathak S, Sengupta A (2021) Analytical application of ionic liquid in determination of trace metallic constituents in U matrix by ICP-OES: A “green” approach for drastic reduction in organic waste burden and time of analysis. J Mol Liq 343:117584

    Article  CAS  Google Scholar 

  34. Malhotra RK, Satyanarayana K (1999) Estimation of trace impurities in reactor-grade uranium using ICP-AES. Talanta 50(3):601–608

    Article  CAS  Google Scholar 

  35. Pathak S, Jayabun S, Rajeswari B, Pathak N, Mohapatra M, Sengupta A, Kadam RM (2019) Determination of trace metallic constituents in nuclear-grade BeO matrixby DC arc carrier distillation andICP-AES: a comparative evaluation. At Spectroc 40(6):215–220

    Article  CAS  Google Scholar 

  36. Samanta SK, Sengupta A, Acharya R, Pujari PK (2021) Standardization and validation of k0-based Neutron Activation Analysis using Apsara-U reactor and its application to pure iron metal and coal sample for trace element determination. Nucl Instr Methods Phys Res A 1018:165856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wish to acknowledge Dr. P.K.Pujari, Director, RC & I Group, Dr. P.K.Mohapatra, Head, Radiochemistry Division, BARC; Dr. R. Acharya, Head, Actinide Spectroscopy Section, Radiochemistry Division and Dr. R.M.Kadam, Former Head, Actinide Spectroscopy Section, Radiochemistry Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Sengupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayabun, S., Pathak, S., Rajeswari, B. et al. ICP-OES based methodology for determination of critical elements in U3Si2 matrix. J Radioanal Nucl Chem 331, 2117–2123 (2022). https://doi.org/10.1007/s10967-022-08275-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08275-4

Keywords

Navigation