Skip to main content
Log in

Using commercial calcium ionophores to make lanthanide sensors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Developing chemical sensors with pronounced sensitivity towards lanthanides is a very important task related to the analytical control of industrial processes in nuclear industry. Various diamides of organic acids were shown to be very effective for such sensing applications when employed as ligands in plasticized polymeric membranes of potentiometric sensors. The chemical structures of some of these ligands (diamides of diglycolic acid) are very similar to those suggested in 80’s as Ca(II) ionophores that were later commercialized. We have hypothesized that commercial ionophores ETH 129 (N,N,N′,N′-tetra[cyclohexyl] diglycolic acid diamide) and ETH 5234 (N,N-dicyclohexyl-N′,N′-dioctadecyl-diglycolic diamide) originally intended for calcium detection can provide noticeable potentiometric sensitivity towards lanthanides. To confirm this hypothesis a series of PVC-plasticized sensor membranes containing ETH 129 and ETH 5234 were prepared. The sensing properties of these membranes in aqueous solutions of rare earth metals were studied and compared to earlier developed lanthanide sensors based on diamide ligands. It was found that commercial calcium ionophores indeed provide pronounced sensitivities towards lanthanides, scandium, and yttrium, while the selectivities in presence of calcium ions are in the favor of Ca(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirsanov D, Rudnitskaya A, Legin A, Babain V (2017) UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry. J Radioanal Nucl Chem 312(3):461–470. https://doi.org/10.1007/s10967-017-5252-8

    Article  CAS  Google Scholar 

  2. Tse P, Bryan SA, Bessen NP, Lines AM, Shafer JC (2020) Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management. Anal Chim Acta 1107:1–13. https://doi.org/10.1016/j.aca.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  3. Oleneva E, Savosina J, Agafonova-Moroz M, Lumpov A, Babain V, Jahatspanian I, Legin A, Kirsanov D (2019) Potentiometric multisensor system for tetra-and hexavalent actinide quantification in complex rare earth metal mixtures related to spent nuclear fuel reprocessing. Sensor Actuator B Chem 288:155–162. https://doi.org/10.1016/j.snb.2019.02.113

    Article  CAS  Google Scholar 

  4. Savosina J, Agafonova-Moroz M, Yaroshenko I, Ashina J, Babain V, Lumpov A, Legin A, Kirsanov D (2020) Plutonium (IV) quantification in technologically relevant media using potentiometric sensor array. Sensors 20(6):1604. https://doi.org/10.3390/s20061604

    Article  CAS  PubMed Central  Google Scholar 

  5. Agafonova-Moroz M, Savosina J, Voroshilov Y, Lukin S, Lumpov A, Babain V, Legin A, Kirsanov D (2020) Quantification of thorium and uranium in real process streams of Mayak radiochemical plant using potentiometric multisensor array. J Radioanal Nucl Chem 323(1):605–612. https://doi.org/10.1007/s10967-019-06941-8

    Article  CAS  Google Scholar 

  6. Sasaki Y, Sugo Y, Suzuki S, Tachimori S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane system. Solv Extr Ion Exch 19:91–103. https://doi.org/10.1081/SEI-100001376

    Article  CAS  Google Scholar 

  7. Ansari SA, Pathak P, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772. https://doi.org/10.1021/cr200002f

    Article  CAS  PubMed  Google Scholar 

  8. Legin A, Babain V, Kirsanov D, Mednova O (2008) Cross-sensitive rare earth metal ion sensors based on extraction systems. Sensor Actuator B Chem 131:29–36. https://doi.org/10.1016/j.snb.2007.12.002

    Article  CAS  Google Scholar 

  9. Mahanty B, Satpati AK, Mohapatra PK (2018) Development of a potentiometric sensor for europium(III) based on N, N, N′, N′-tetraoctyldiglycolamide (TODGA) as the ionophore. J Electroanal Chem 808:340–347. https://doi.org/10.1016/j.jelechem.2017.11.072

    Article  CAS  Google Scholar 

  10. Narita H, Yaita T, Tamura K, Tachimori S (1998) Solvent extraction of trivalent lanthanoid ions with N, N’-dimethyl-N, N’-diphenyl-3-oxapentanediamide. Radiochim Acta 81(4):223–226. https://doi.org/10.1524/ract.1998.81.4.223

    Article  CAS  Google Scholar 

  11. Turanov AN, Karandashev VK, Baulin VE (2008) Effect of anions on the extraction of lanthanides (III) by N, N′-Dimethyl-N, N′-Diphenyl-3-Oxapentanediamide. Solv Extr Ion Exch 26:77–99. https://doi.org/10.1080/07366290801904871

    Article  CAS  Google Scholar 

  12. Pretsch E, Ammann D, Osswald HF, Güggi M, Simon W (1980) Ionophore of the type of 3-oxapentandiamide. Helv Chim Acta 63:191–196. https://doi.org/10.1002/hlca.19800630117

    Article  CAS  Google Scholar 

  13. Ma YL, Rao XH, Zhong SM, Ren S, Yu TX, Zhen Q (1992) A study of calcium ion-selective PVC membrane electrode based on neutral carrier N, N, N’, N’-tetracyclo-3-oxapentanediamide (correction of oxapetanediamide). J Tongji Med Univ 12(2):98–102. https://doi.org/10.1007/BF02887789

    Article  CAS  PubMed  Google Scholar 

  14. Ertürün HEK (2018) The use of multi-walled carbon nanotubes and titanium oxide nano particles in the construction of calcium ionophore IV based calcium-selective electrodes. Int J Electrochem Sci 13:9452–9465

    Article  Google Scholar 

  15. Qin Y, Mi Y, Bakker E (2000) Determination of complex formation constants of 18 neutral alkali and alkaline earth metal ionophores in poly (vinyl chloride) sensing membranes plasticized with bis (2-ethylhexyl) sebacate and o-nitrophenyloctylether. Anal Chim Acta 421(2):207–220. https://doi.org/10.1016/S0003-2670(00)01038-2

    Article  CAS  Google Scholar 

  16. Ataş HB, Kenar A, Taştekin M (2020) An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods. Talanta 217:121110. https://doi.org/10.1016/j.talanta.2020.121110

    Article  CAS  PubMed  Google Scholar 

  17. Makrlík E, Kvíčalová M, Vaňura P (2016) Sodium ionophore III as very effective receptor for trivalent europium and americium. J Solut Chem 45(3):463–474. https://doi.org/10.1007/s10953-016-0447-0

    Article  CAS  Google Scholar 

  18. Vaňura P, Selucký P (2020) The extraction of europium and americium by the nitrobenzene solution of dicarbollylcobaltate in the presence of some commercially available dioxadiamides. J Radioanal Nucl Chem 323(3):1071–1079. https://doi.org/10.1007/s10967-020-07021-y

    Article  CAS  Google Scholar 

  19. Makrlík E, Vaňura P (2019) Calcium ionophore I as very effective extraction agent for trivalent europium and americium. J Serb Chem Soc 84(2):199–209. https://doi.org/10.2298/JSC180219111M

    Article  Google Scholar 

  20. Vaňura P, Makrlík E, Selucký P (2018) Extraction of trivalent europium and americium by the synergistic mixture of bis-1, 2-dicarbollylcobaltate and N, N, N′, N′-tetraoctyl diglycolamide in highly polar 3-nitro-α, α, α-trifluorotoluene solvent. J Radioanal Nucl Chem 317(1):443–449. https://doi.org/10.1007/s10967-018-5915-0

    Article  CAS  Google Scholar 

  21. Gujar R, Ansari S, Murali M, Mohapatra P, Manchanda V (2010) Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning. J Radioanal Nucl Chem 284(2):377–385. https://doi.org/10.1007/s10967-010-0467-y

    Article  CAS  Google Scholar 

  22. Rais J, Grüner B (2004) Extraction with metal bis (dicarbollide) anions: metal bis (dicarbollide) extractants and their applications in separation chemistry. Ion Exch Solv Extr 17:243–334. https://doi.org/10.1002/chin.200519299

    Article  CAS  Google Scholar 

  23. Paulenova A, Alyapyshev Y, Babain V, Herbst R, Law D (2013) Extraction of lanthanoids with diamides of dipcolinic acid from nitric acid solutions II Synergistic effect of ethyl-tolyl derivates and dicarbollide cobalt. Solv Extr Ion Exch 31(2):184–197. https://doi.org/10.1080/07366299.2012.735528

    Article  CAS  Google Scholar 

  24. Makrlík E, Vaňura P, Selucký P, Babain V, Dar’in D, Alyapyshev M (2017) N, N, N’, N’-tetrabutyl-1, 10-phenanthroline-2, 9-dicarboxamide as very effective extraction agent for trivalent europium and americium. Acta Chim Slov 64(3):582–589. https://doi.org/10.17344/acsi.2017.3295

    Article  CAS  PubMed  Google Scholar 

  25. Legin A, Kirsanov D, Babain V, Borovoy A, Herbst R (2006) Cross-sensitive rare-earth metal sensors based on bidentate neutral organophosphorus compounds and chlorinated cobalt dicarbollide. Anal Chim Acta 572(2):243–247. https://doi.org/10.1016/j.aca.2006.03.115

    Article  CAS  PubMed  Google Scholar 

  26. Mihali C, Vaum N (2012) Use of plasticizers for electrochemical sensors. In: Luqman M (ed) Recent advances in plasticizers. InTech, Romania. https://doi.org/10.5772/37006

    Chapter  Google Scholar 

  27. Zhu ZX, Sasaki Y, Suzuki H, Suzuki S, Kimura T (2004) Cumulative study on solvent extraction of elements by N, N, N′, N′-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal Chim Acta 527(2):163–168. https://doi.org/10.1016/j.aca.2004.09.023

    Article  CAS  Google Scholar 

  28. Yaroshenko I, Alyapyshev M, Babain V, Legin A, Kirsanov D (2019) Potentiometric sensors and multisensor systems for the determination of lanthanides. J Anal Chem 74(10):1003–1018. https://doi.org/10.1134/S1061934819100113

    Article  CAS  Google Scholar 

  29. Bodor S, Zook JM, Lindner E, Tóth K, Gyurcsányi RE (2009) Chronopotentiometric method for the assessment of ionophore diffusion coefficients in solvent polymeric membranes. J Solid State Electrochem 13(1):171–179. https://doi.org/10.1007/s10008-008-0614-3

    Article  CAS  Google Scholar 

  30. Bühlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk optodes 2 Ionophores for potentiometric and optical sensors. Chem Rev 98(4):1593–1688. https://doi.org/10.1021/cr970113+

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kirsanov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehabadi, M., Saveliev, M., Legin, A. et al. Using commercial calcium ionophores to make lanthanide sensors. J Radioanal Nucl Chem 331, 1751–1758 (2022). https://doi.org/10.1007/s10967-022-08220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08220-5

Keywords

Navigation