Skip to main content
Log in

Plutonium(IV) quantification in acidic process solutions using partial least-squares regression applied to UV–Vis spectrophotometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a Partial Least-Squares (PLS) regression approach mainly based on a lab-produced calibration set enhanced with a few process samples is proposed. Comparison with spectrophotometric reference offline measurements and predictions by PLS is presented on a validation set composed of real process solutions. The mean difference between the presented model predictions and offline measurements is less than 5%. The results show that this approach can be effective for process control and can successfully replace usual sample preparations and time-consuming calibration procedures if the model is constructed properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ache HJ (1992) Analytical chemistry in nuclear technology. Fresenius J Anal Chem. https://doi.org/10.1007/BF00328573

    Article  Google Scholar 

  2. Nelson GL (2019) On-line monitoring of solutions within microfluidic chips: simultaneous Raman and UV-vis absorption spectroscopies. ACS Sens. https://doi.org/10.1021/acssensors.9b00736

    Article  PubMed  Google Scholar 

  3. Cerdà V (2019) Automation of radiochemical analysis by flow techniques – A review. Trends Anal Chem. https://doi.org/10.1016/j.trac.2019.06.001

    Article  Google Scholar 

  4. Cleveland JM (1979) The Chemistry of Plutonium. American Nuclear Society, La Grange Park, Illinois

    Google Scholar 

  5. Patrick Carey W (1991) Determining chemical characteristics of plutonium solutions using visible spectrometry and multivariate chemometric methods. Chemom Intell Lab Syst. https://doi.org/10.1016/0169-7439(91)80055-U

    Article  Google Scholar 

  6. Moody KJ, Shaughnessy DA, Casteleyn KC, Ottmar H, Lützenkirchen K, Wallenius M, Wiss T (2010) In: Morss LR The chemistry of the actinide and transactinide elements, 4th edn. Springer, New York

    Google Scholar 

  7. Lines AM (2017) Multivariate analysis for quantification of plutonium(IV) in nitric acid based on absorption spectra. Anal Chem. https://doi.org/10.1021/acs.analchem.7b02161

    Article  PubMed  Google Scholar 

  8. Lascola R (2017) A piecewise local partial least squares (PLS) methods for quantitative analysis of plutonium nitrate solutions. Appl Spectrosc. https://doi.org/10.1177/0003702817734000

    Article  PubMed  Google Scholar 

  9. Casella A (2016) MicroRaman measurements for nuclear fuel reprocessing applications. Procedia Chem. https://doi.org/10.1016/j.proche.2016.10.065

    Article  Google Scholar 

  10. Kirsanov D (2017) UV-Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5252-8

    Article  Google Scholar 

  11. Tse P (2020) Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management. Anal Chim Acta. https://doi.org/10.1016/j.aca.2020.02.008

    Article  PubMed  Google Scholar 

  12. Bro R (2003) Multivariate calibration What is in chemometrics for the analytical chemist? Anal Chim Acta. https://doi.org/10.1016/S0003-2670(03)00681-0

    Article  Google Scholar 

  13. Naes T, Isaksson T, Fearn T, Davies T (2002) A User-Friendly Guide to Multivariate Calibration and Classification. NIR Publications, Chichester

    Google Scholar 

  14. Day RS (1989) A Visible/Near-IR Spectral Database for Plutonium Solutions of Known Nitric Acid, Fluoride, and Oxalate Composition. Report LA—11480, Las Alamos National Laboratory

  15. Patrick Carey W (1989) Spectrophotometric method for the analysis of plutonium and nitric acid using partial least-squares regression. Anal Chem. https://doi.org/10.1021/ac00190a016

    Article  Google Scholar 

  16. Geladi P (1986) Partial Least-Squares regression: a tutorial. Anal Chim Acta. https://doi.org/10.1016/0003-2670(86)80028-9

    Article  Google Scholar 

  17. Faber NM (2002) Standard error of prediction for multiway PLS1 Background and a simulation study. Chemom Intell Lab. https://doi.org/10.1016/S0169-7439(01)00204-0

    Article  Google Scholar 

  18. Ryan JL (1960) Species involved in the anion-exchange absorption of quadrivalent actinide nitrates. J Phys Chem. https://doi.org/10.1021/j100839a007

    Article  Google Scholar 

  19. Lee MH (2007) Absorption spectroscopic properties for Pu (III, IV and VI) in nitric and hydrochloric acid media. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-007-6848-1

    Article  Google Scholar 

  20. Balasubramonian S (2020) Thermodynamic modeling of Pu(IV) and nitric acid extraction by 1.1 M tri-iso-amyl phosphate in n-dodecane. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07338-8

    Article  Google Scholar 

  21. Kubic Jr WL (2012) A thermodynamic model of plutonium(IV) nitrate solutions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-012-1703-4

    Article  Google Scholar 

  22. Kirk Veirs D (1994) Characterization of the nitrate complexes of Pu(IV) using absorption spectroscopy, 15N NMR, and EXAFS. J Alloy Compd. https://doi.org/10.1016/0925-8388(94)90924-5

    Article  Google Scholar 

  23. Barr ME (2002) Plutonium(IV) sorption by soluble anion-exchange polymers. Sep Sci Technol. https://doi.org/10.1081/SS-120002241

    Article  Google Scholar 

  24. Kvalheim OM (2014) Variable importance in latent variable regression models. J Chemom. https://doi.org/10.1002/cem.2626

    Article  Google Scholar 

  25. Estienne F (2004) A comparison of multivariate calibration techniques applied to experimental NIR data sets. Part III: Robustness against instrumental perturbation conditions. Chemom Intell Lab. https://doi.org/10.1016/j.chemolab.2004.04.007

    Article  Google Scholar 

  26. Sooväli L (2006) Uncertainty sources in UV-Vis spectrophotometric measurement Accredit. Qual Assur. https://doi.org/10.1007/s00769-006-0124-x

    Article  Google Scholar 

  27. Wise BM (1996) The process chemometrics approach to process monitoring and fault detection. J Process Control. https://doi.org/10.1016/0959-1524(96)00009-1

    Article  Google Scholar 

  28. Berg JM (1998) Plutonium(IV) mononitrate and dinitrate complex formation in acid solutions as a function of ionic strength. J Radioanal Nucl Chem. https://doi.org/10.1007/BF02385932

    Article  Google Scholar 

  29. Savitzky A (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  30. Lines AM (2020) Sensor Fusion: Comprehensive real-time, on-line monitoring for process control via visible, near-infrared, and raman spectroscopy. ACS Sens. https://doi.org/10.1021/acssensors.0c00659

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bailly.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailly, G., Maloubier, D. & Legay, G. Plutonium(IV) quantification in acidic process solutions using partial least-squares regression applied to UV–Vis spectrophotometry. J Radioanal Nucl Chem 331, 1267–1273 (2022). https://doi.org/10.1007/s10967-022-08205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08205-4

Keywords

Navigation