Skip to main content
Log in

Rapid and efficient column separation of Re(VII) as a surrogate for Tc(VII) with benzimidazole-based cross-linked poly(ionic liquid)s

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, the imidazole-based poly(ionic liquid)s (PILs) synthesized by one step method has been applied for the enrichment and recovery of Re(VII), a nonradioactive surrogate of Tc(VII). The anions (Cl) in the materials could be efficiently exchanged by ReO4 and TcO4 in a rather short time. The PILs-Cl-1 and PILs-Cl-2 before and after adsorption were characterized by BET, SEM, FT-IR and XPS. The adsorption performance of Re(VII) was investigated by batch and column experiments. By contrast, PILs-Cl-2 exhibited a better adsorption performance, and the adsorption capacity reached 94.92 mg/g for ReO4. In the recovery experiment of TcO4, the maximum recovery rate of PILs-Cl-2 for TcO4 was 99.9%. The excellent regenerative and recyclable performance of PILs-Cl-2 was also evaluated in the column experiment, which provided an important basis for practical application in industrial field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang X, Da Silva I, Godfrey HGW, Callear SK, Sapchenko SA, Cheng Y, Vitórica-Yrezábal I, Frogley MD, Cinque G, Tang CC, Giacobbe C, Dejoie C, Rudíc S, Ramirez-Cuesta AJ, Denecke MA, Yang S, Schröde M (2017) Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. J Am Chem Soc 139:16289–16296

    Article  CAS  Google Scholar 

  2. Lou Z, Huang M, Cui J, Wu S, Xing S, Zhou P, Shan W, Xiong Y (2019) Copolymers of vinylimidazolium-based ionic liquids and divinylbenzene for adsorption of TcO4 or ReO4. Hydrometallurgy 190:105147

  3. Yu P, Wang S, Alekseev EV, Depmeier W, Hobbs DT, Albrecht-Schmitt TE, Phillips BL, Casey WH (2010) Technetium-99 MAS NMR spectroscopy of a cationic framework material that traps ReO4 Ions. Angewandte Chemie Int Ed 49:5975–5977

    Article  CAS  Google Scholar 

  4. Hong T, Liu M, Ma J, Yang G, Li L, Mumford KA, Stevens GW (2020) Selective recovery of Rhenium from industrial leach solutions by synergistic solvent extraction. Sep Purif Technol 236:116281

  5. Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK (2015) Criticality of metals and metalloids. PNAS 112:4257–4262

    Article  CAS  Google Scholar 

  6. Shen LT, Tesfaye F, Li XB, Lindberg D, Taskinen PK (2021) Review of rhenium extraction and recycling technologies from primary and secondary resources. Miner Eng 161:106719

  7. Liu F, Hua R, Zhang F, Liu H, Lee C (2020) Adsorption and separation of Re(VII) using trimethylamine-functionalized strong base anion exchange resin. J Radioanal Nucl Chem 326:445–454

    Article  CAS  Google Scholar 

  8. Bagher M, Bahram F, Eskandar R, Alamdari K (2017) Competitive adsorption characteristics of rhenium in single and binary (Re-Mo) systems using Purolite A170. Int J Miner Process 169:1–6

    Article  Google Scholar 

  9. Zagorodnyaya AN, Abisheva ZS, Sharipova AS, Sadykanova SE, Atanova OV, Bochevskaya YG (2013) Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions. Hydrometallurgy 131:127–132

    Article  Google Scholar 

  10. MacFarlane D, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, Ohno H, Watanabe M, Yan F, Zheng W (2016) Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater 1:15005

    Article  CAS  Google Scholar 

  11. Xu W, Ledin PA, Shevchenko V, Tsukruk VV (2015) Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Appl Mater Interfaces 23:12570–12596

    Article  Google Scholar 

  12. Puguan JM, Kim H (2020) Synthesis of free-standing poly(ionic liquid) bearing 1,2,3-triazole group for the adsorptive elimination of Cr6+ from aqueous solution. J Environ Chem Eng 8:104084

  13. Zhang Y, Yuan B, Zhang Y, Cao Q, Li Y, Yang C, Zhou J (2020) Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chem Eng J 400:125984

  14. Thangaral VK, Bhaskarapillai AK (2020) Organic acids modify the binding selectivity of crosslinked poly(ionic liquid) between Sb(III) and Sb(V). Mater Today Com 25:101507

  15. Song H, Liu Y, Wang Y, Feng B, Jin X, Huang T, Xiao M, Gai H (2020) Design of hyper-crosslinked poly(ionic liquid)s for efficiently catalyzing high-selective hydrogenation of phenylacetylene under ambient conditions. Mol Catal 493:111081

  16. Xie Y, Lin J, Lin H, Jiang Y, Liang J, Wang H, Tu S, Li J (2020) Removal of anionic hexavalent chromium and methyl orange pollutants by using imidazolium-based mesoporous poly(ionic liquid)s as efficient adsorbents in column. J Hazard Mater 392:122496

  17. Wieszczycka K, Filipowiak K, Wojciechowska I, Aksamitowski P (2020) Novel ionic liquid-modified polymers for highly effective adsorption of heavy metals ions. Sep Purif Technol 236:116313

  18. Sang Y, Huang J (2020) Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion. Chem Eng J 385:123973

  19. Chu H, Yu C, Wan Y, Zhao D (2009) Synthesis of ordered mesoporous bifunctional TiO2-SiO2-polymer nanocomposites. J Mater Chem 19:8610–8618

    Article  CAS  Google Scholar 

  20. Zhang W, Wang Q, Wu H, Wu P, He M (2014) A highly ordered mesoporous polymer supportedimidazolium based ionic liquid: an efficient catalyst for Cycloaddition of CO2 with epoxides to produce cyclic carbonates. Green Chem 16:4767–4774

    Article  CAS  Google Scholar 

  21. Gan Y, Chen G, Sang Y (2019) Oxygen-rich hyper-cross-linked polymers with hierarchical porosity for aniline adsorption. Chem Eng J 368:29–36

    Article  CAS  Google Scholar 

  22. Zhang B, Liu H, Wang W, Gao Z, Cao Y (2017) Recovery of rhenium from copper leach solutions using ion exchange with weak base resins. Hydrometallurgy 173:50–56

    Article  CAS  Google Scholar 

  23. Wu H, Chi F, Zhang S, Wen J, Xiong J, Hu S (2019) Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Microporous Mesoporous Mater 288:109567

  24. Tan L, Zhang X, Liu Q, Wang J, Sun Y, Jing X, Liu J, Song D, Liu L (2015) Preparation of magnetic core–shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI). J Am Chem Soc 44:6909–6917

    CAS  Google Scholar 

  25. Xie K, Dong Z, Zhai M, Shi W, Zhao L (2021) Radiation-induced surface modification of silanized silica with n-alkyl-imidazolium ionic liquids and their applications for the removal of ReO4 as an analogue for TcO4. Appl. Surf. Sci 551:149406

  26. Shi F, Zu J, Ye M, Yin X (2013) Preparation of anionic exchange adsorbent by pre-radiation method and its adsorption performance toward rhenium ions. Polym Mater Sci Eng 29:157–160

    CAS  Google Scholar 

  27. Li Y, He H, Liu Z, Lai Z, Wang Y (2021) A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium(VI) and thorium(IV) adsorption. J Radioanal Nucl Chem 328:289–298

    Article  CAS  Google Scholar 

  28. Su Y, Wang Y, Li X, Li X, Wang R (2016) Imidazolium-based porous organic polymers: anion exchange-driven capture and luminescent probe of Cr2O72–. ACS Appl Mater Interfaces 8:18904–18911

    Article  CAS  Google Scholar 

  29. Desai AV, Manna B, Karmakar A, Sahu A, Ghosh SK (2016) A water-stable cationic metal–organic framework as a dual adsorbent of oxoanion pollutants. Angewandte Chemie Int Ed 55:7811–7815

    Article  CAS  Google Scholar 

  30. Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J Nucl Mater 396:251–256

    Article  Google Scholar 

  31. Ding H, Zhang X, Yang H, Luo X, Lin X (2019) Highly efficient extraction of thorium from aqueous solution by fungal mycelium-based microspheres fabricated via immobilization. Chem Eng J 368:37–50

    Article  CAS  Google Scholar 

  32. Sato T, Seki T, Yokoyama S (2017) Adsorption of cesium ion on silk fibroin in aqueous solution. Trans Mat Res Soc 2:19–22

    Article  Google Scholar 

  33. Hu Y, Giret S, Meinusch R, Han J (2019) Fontaine, F.; Kleitz, F.; Larivière, D. Selective separation and preconcentration of Th(IV) using organo-functionalized, hierarchically porous silica monoliths. J Mater Chem A 7:289–302

    Article  CAS  Google Scholar 

  34. Xiong Y, Xu J, Shan W, Lou ZN, Fang D, Zang S, Han G (2013) A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour Technol 127:464–472

    Article  CAS  Google Scholar 

  35. Lou Z, Wang J, Jin X, Wan L, Wang Y, Chen H, Shan W, Xiong Y (2015) Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chem Eng J 273:231–239

    Article  CAS  Google Scholar 

  36. Alfaro I, Molina L, González P, Gaete J, Valenzuela F, Marco JF, Sáez C, Basualto C (2019) Silica-coated magnetite nanoparticles functionalized with betaine and their use as an adsorbent for Mo(VI) and Re(VII) species from acidic aqueous solutions. J Ind Eng Chem 78:271–283

    Article  CAS  Google Scholar 

  37. Gaete J, Molina L, Alfaro I, Yañez J, Valenzuela F, Basualto C (2019) Recovery and separation of rhenium and molybdenum from aqueous solutions that simulate mine waters using magnetite nanoparticles functionalized with amine-derivative groups. Miner Eng 136:66–76

    Article  CAS  Google Scholar 

  38. Seo S, Choi WS, Yang T, Kim MJ, Tran T (2012) Recovery of rhenium and molybdenum from a roaster fume scrubbing liquor by adsorption using activated carbon. Hydrometallurgy 129–130:145–150

    Article  Google Scholar 

  39. Zu J, Wei Y, Ye M, Tang F, He L, Liu R (2015) Preparation of a new anion exchanger by pre-irradiation grafting technique and its adsorptive removal of rhenium (VII) as analogue to Tc-99. Nucl Sci Tech 26:69–75

    Google Scholar 

  40. Li X, Han D, Guo T, Peng J, Xu L, Zhai M (2018) Quaternary phosphonium modified hierarchically macro/mesoporous silica for fast removal of perrhenate. Ind Eng Chem Res 57:13511–13518

    Article  CAS  Google Scholar 

  41. Shu X, Shen L, Wei Y, Hua D (2015) Synthesis of surface ion-imprinted magnetic microsphere for efficient sorption of perrhenate: a structural surrogate for pertechnetate. J Mol Liq 211:621–627

    Article  CAS  Google Scholar 

  42. Xiao P, Han D, Zhai M, Xu L, Li H (2017) Comparison with adsorption of Re (VII) by two different γ-radiation synthesized silica-grafting of vinylimidazole/4-vinylpyridine adsorbents. J Hazard Mater 324:711–723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (22176078) and the Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (JXMS202015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Yi Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 21031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fu, X., Li, XX. et al. Rapid and efficient column separation of Re(VII) as a surrogate for Tc(VII) with benzimidazole-based cross-linked poly(ionic liquid)s. J Radioanal Nucl Chem 331, 877–888 (2022). https://doi.org/10.1007/s10967-021-08160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08160-6

Keywords

Navigation