Skip to main content
Log in

Combination of N’-N’-di-n-hexyl-thiodiglycolamide and 2,2’-[(2-ethylhexyl)imino]bis[N,N-bis(2-ethylhexyl) acetamide] for the enhanced adsorption of palladium ions from simulated high-level liquid waste

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A N’-N’-di-n-hexyl-thiodiglycolamide and 2,2’-[(2-ethylhexyl)imino]bis[N,N-bis(2-ethylhexyl)acetamide] impregnated porous silica-based adsorbent was prepared for enhancing the adsorption of palladium ions from simulated high-level liquid waste. The adsorbent exhibited a relatively fast palladium response and selectivity without the use of additional modification reagents. Palladium ions were adsorbed over a wide nitric acid range of 0.6−5 M and a broad temperature range of 288−323 K. The uniform distribution of adsorbed palldium ions onto the study adsorbent was confirmed by PIXE. Successful recovery of more than 90% of the palladium ions was achieved using 0.1 M thiourea via separation by column experiments. Based on the obtained data, it is expected that the prepared adsorbent can be used for the practical separation of palladium ions from high-level liquid waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S (2017) Palladium membranes applications in reaction systems for hydrogen separation and purification: a review. Chem Eng Process: Process Intensificat 121:24–49

    Article  CAS  Google Scholar 

  2. Kim MS, Kim EY, Jeong J, Lee JC, Kim W (2010) Recovery of Platinum and palladium from the spent petroleum catalysts by substrate dissolution in sulfuric acid. Mater Trans 51(10):1927–1933

    Article  CAS  Google Scholar 

  3. Ponoua J, Wang LP, Dodbiba G, Fujita T (2018) Separation of palladium and silver from semiconductor solid waste by means of liquid-liquid-powder extraction using dodecyl amine acetate as a surfactant collector. Sep Purif Technol 191:86–93

    Article  Google Scholar 

  4. Yang XJ, Chen JF, Hu LS, Wei JY, Shuai MB, Huang DS, Yue GZ, Astruc D, Zhao PX (2019) Palladium separation by Pd-catalyzed gel formation via alkyne coupling. Chem Mater 31(18):7386–7394

    Article  CAS  Google Scholar 

  5. Godlewskazylkiewicz B, Lesniewska B, Gasiewska U, Hulanicki A (2000) Ion-exchange preconcentration and separation of trace amounts of platinum and palladium. Anal Lett 33(13):2805–2820

    Article  CAS  Google Scholar 

  6. Niskavaara H, Kontas E (1990) Reductive coprecipitation as a separation method for the determination of gold, palladium, platinum, rhodium, silver, selenium and tellurium in geological samples by graphite furnace atomic absorption spectrometry. Anal Chim Acta 231:273–282

    Article  CAS  Google Scholar 

  7. Kim DI, Gwak G, Dorji P, He D, Puntsho S, Hong S, Shon H (2018) Palladium recovery through membrane capacitive deionization from metal plating wastewater. ACS Sustain Chem Eng 6(2):1692–1701

    Article  CAS  Google Scholar 

  8. Kim S, Song MH, Wei W, Yun YS (2015) Selective biosorption behavior of escherichia coli biomass toward Pd(II) in Pt(IV)-Pd(II) binary solution. J Hazard Mater 283:657–662

    Article  CAS  PubMed  Google Scholar 

  9. Tamahkar E, Bakhshpour M, Andaç M, Denizli A (2017) Ion imprinted cryogels for selective removal of Ni(II) ions from aqueous solutions. Sep Purif Technol 179:36–44

    Article  CAS  Google Scholar 

  10. Neyestani MR, Shemirani F, Mozaffari S, Alvand M (2017) A magnetized graphene oxide modified with 2-mercaptobenzothiazole as a selective nanosorbent for magnetic solid phase extraction of gold(III), palladium(II) and silver(I). Microchim Acta 184:2871–2879

    Article  CAS  Google Scholar 

  11. Ito T, Kim S-Y, Nagano N, Hitomi K (2017) Effects of γ-ray irradiation on thiodiglycolamide-type extractant-impregnated adsorbents for separation of platinum group metals from high-level liquid waste. Energy Procedia 131:195–202

    Article  CAS  Google Scholar 

  12. Cibula M, Inaba Y, Li YJ, Suzuki T, Narita H, Takeshita K (2019) Effect of HNO3 concentration on the Pd(II) extraction properties using a thiodiglycolamide compound. Solvent Extr Res Dev 26(2):43–49

    Article  CAS  Google Scholar 

  13. Ruhela R, Singh KK, Tomar BS, Sharma JN, Kumar M, Hubli RC, Suri AK (2012) Amberlite XAD-16 functionalized with 2-acetyl pyridine group for the solid phase extraction and recovery of palladium from high level waste solution. Sep Purif Technol 99:36–43

    Article  CAS  Google Scholar 

  14. Guo G, Xu YL, Yang XX, Wang F, Zhou F, Yu JX, Chi R (2017) Effect of HNO3 concentration on a novel silica-based adsorbent for separating Pd(II) from simulated high level liquid waste. Sci Rep 7(1):11290

    Article  Google Scholar 

  15. Sasaki Y, Tsubata Y, Kitatsuji Y, Sugo Y, Shirasu N, Morita Y, Kimura T (2013) Extraction behavior of metal ions by TODGA, DOODA, MIDOA, and NTAamide Extractants from HNO3 to n-Dodecane. Solvent Extr Ion Exch 31(4):401–415

    Article  CAS  Google Scholar 

  16. Moore KL, Barac M, Brajković M, Bailey MJ, Siketić Z, Radović IB (2019) Determination of deposition order of toners, inkjet inks, and blue ballpoint pen combining MeV-secondary ion mass spectrometry and particle induced x-ray emission. Anal Chem 91(20):12997–13005

    Article  CAS  PubMed  Google Scholar 

  17. Wu Y, Zhang XX, Wei YZ, Mimura H (2017) Development of adsorption and solidification process for decontamination of Cs-contaminated radio-active water in Fukushima through silica-based AMP hybrid adsorbent. Sep Purif Technol 181:76–84

    Article  CAS  Google Scholar 

  18. Ning SY, Zhang SC, Zhang W, Zhou J, Wang SY, Wang XP, Wei YZ (2020) Separation and recovery of Rh, Ru and Pd from nitrate solution with a silica based IsoBu-BTP/SiO2-P adsorbent. Hydrometallurgy 191:105207

    Article  CAS  Google Scholar 

  19. Yu Q, Ning SY, Zhang W, Wang XP, Wei YZ (2018) Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent. Hydrometallurgy 181:74–81

    Article  CAS  Google Scholar 

  20. Matsuyama S, Ishii K, Yamazaki H, Sakamoto R, Fujisawa M, Amartaivan Ts, Ohishi Y, Rodriguez M, Suzuki A, Kamiya T, Oikawa M, Arakawa K, Matsumoto N (2003) Preliminary results of microbeam at Tohoku University. Nucl Instrum Methods Phys Res B 210:59–64

    Article  CAS  Google Scholar 

  21. Awual MdR, Khraisheh M, Alharthi NH, Luqman M, Islam A, Karim MR, Rahman MM, Khaleque MdA (2018) Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem Eng J 343:118–127

    Article  CAS  Google Scholar 

  22. Wu Y, Kim SY, Tozawa D, Ito T, Tada T, Hitomi K, Kuraoka E, Yamazaki H, Ishii K (2012) Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin. J Nucl Sci Technol 49(3):320–327

    Article  CAS  Google Scholar 

  23. Wu H, Kim SY, Miwa M, Matsuyama S (2021) Synergistic adsorption behavior of a silica-based adsorbent toward palladium, molybdenum, and zirconium from simulated high-level liquid waste. J Hazard Mater 411:125136

    Article  CAS  PubMed  Google Scholar 

  24. Xiao J, Hu R, Chen GC (2020) Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J Hazard Mater 387:121980

    Article  CAS  PubMed  Google Scholar 

  25. Arai Y, Watanabe S, Ohno S, Nomura K, Nakamura F, Arai T, Seko N, Hoshina H, Hagura N, Kubota T (2020) Microscopic analyses on Zr adsorbed IDA chelating resin by PIXE and EXAFS. Nucl Instrum Methods Phys Res B 477:54–59

    Article  CAS  Google Scholar 

  26. Petalaa E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboril R, Karakassides MA (2013) Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution. J Hazard Mater 261:295–306

    Article  Google Scholar 

  27. Anpilogova GR, Khisamutdinov RA, Golubyatnikova LG, Murinov YuI (2017) Extraction of palladium(II) with (RS)-1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole from nitric acid solutions. Russ J Gen Chem 87(1):132–138

    Article  CAS  Google Scholar 

  28. Mu WJ, Du SZ, Li XL, Yu QH, Wei HY, Yang YC, Peng SM (2019) Removal of radioactive palladium based on novel 2D titanium carbides. Chem Eng J 358:283–290

    Article  CAS  Google Scholar 

  29. Ngah WSW, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manage 91(4):958–969

    Article  CAS  PubMed  Google Scholar 

  30. Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA (2018) Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J Environ Manage 218:59–70

    Article  CAS  PubMed  Google Scholar 

  31. Hu QL, Wang Q, Feng CP, Zhang ZY, Lei ZF, Shimizu K (2018) Insights into mathematical characteristics of adsorption models and physical meaning of corresponding parameters. J Mol Liq 254:20–25

    Article  CAS  Google Scholar 

  32. Zou Q, Wu Y, Shu QD, Ning SY, Wang XP, Wei YZ, Tang FD (2018) Separation of palladium along with minor actinides by isoBu-BTP/SiO2-P Adsorbent from high-level liquid waste. J Chem Eng Data 63(8):2931–2939

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Yun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, M., Wu, H. & Kim, SY. Combination of N’-N’-di-n-hexyl-thiodiglycolamide and 2,2’-[(2-ethylhexyl)imino]bis[N,N-bis(2-ethylhexyl) acetamide] for the enhanced adsorption of palladium ions from simulated high-level liquid waste. J Radioanal Nucl Chem 331, 1731–1740 (2022). https://doi.org/10.1007/s10967-022-08230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08230-3

Keywords

Navigation