Skip to main content
Log in

Sedimentation rate and accumulation of nutrients in the Upper Paraná river floodplain

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The objective was to rebuild the history of sedimentation and accumulation of nutrients rate in the Upper Paraná River floodplain. Two corers were collected and sliced at intervals of 2 cm. In the sub-samples geochronological analysis was performed by means of the isotope 210Pb, and also the quantification of organic carbon, nitrogen and phosphorus. Garças Pond presented sedimentation rate of 7.7 mm yr−1 and Patos Pond 6.8 mm yr−1. The flood pulse is the main regulating factor of the sedimentation rate on the Upper Paraná River floodplain. The total organic carbon derives from allochthonous origin and the limiting productivity nutrient in the system is nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. Proc R Soc B 279:4322–4333. https://doi.org/10.1098/rspb.2012.1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gooddy DC, Lapworth DJ, Bennett SA, Heaton THE, Williams PJ, Surridge BWJ (2016) A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Res 88:623–633. https://doi.org/10.1016/j.watres.2015.10.046

    Article  CAS  PubMed  Google Scholar 

  3. Mischler JA, Taylor PG, Townsend AR (2014) Nitrogen limitation of pond ecosystems on the plains of eastern Colorado. PLoS ONE 9:e95757. https://doi.org/10.1371/journal.pone.0095757

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paerl HW, Xu H, Hall NS, Rossignol KL, Joyner AR, Zhu G, Qin B (2014) Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. J Freshw Ecol 30:5–24. https://doi.org/10.1080/02705060.2014.994047

    Article  CAS  Google Scholar 

  5. Zalewska T, Woroń J, Danowska B, Suplińska M (2015) Temporal changes in Hg, Pb, Cd and Zn environmental concentrations in the southern Baltic Sea sediments dated with 210Pb method. Oceanologia 57:32–43. https://doi.org/10.1016/j.oceano.2014.06.003

    Article  Google Scholar 

  6. Li HB, Yu S, Li GL, Deng H (2012) Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88:1161–1169. https://doi.org/10.1016/j.chemosphere.2012.03.061

    Article  CAS  PubMed  Google Scholar 

  7. Ayrault LE, Cloarec S, Rianti Priadi MF, Bonté C, Göpel PCH (2012) Lead contamination of the Seine River, France: geochemical implications of a historical perspective. Chemosphere 87:902–910. https://doi.org/10.1016/j.chemosphere.2012.01.043

    Article  CAS  PubMed  Google Scholar 

  8. Mabit L, Benmansour M, Abril JM, Walling DE, Meusburger K, Iurian AR, Bernard C, Tarján C, Owens PN, Blake WH, Alewell C (2014) Fallout 210Pb as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth Sci Rev 138:335–351. https://doi.org/10.1016/j.earscirev.2014.06.007

    Article  CAS  Google Scholar 

  9. Zhou P, Li D, Li H, Fang H, Huang C, Zhang Y, Zhang H, Zhao L, Zhou J, Wang H, Yang J (2015) Distribution of radionuclides in a marine sediment core off the waterspout of the nuclear power plants in Daya Bay, northeastern South China Sea. J Environ Radioact 145:102–112. https://doi.org/10.1016/j.jenvrad.2015.03.018

    Article  CAS  PubMed  Google Scholar 

  10. Patiris DL, Tsabaris C, Anagnostou CL, Androulakaki EG, Pappa FK, Eleftheriou G, Sgouros G (2016) Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf. J Environ Radioact 157:1–15. https://doi.org/10.1016/j.jenvrad.2016.02.025

    Article  CAS  PubMed  Google Scholar 

  11. Marsan D, Rigaud S, Church T (2014) Natural radionuclides 210Po and 210Pb in the Delaware and Chesapeake Estuaries: modeling scavenging rates and residence times. J Environ Radioact 138:447–455. https://doi.org/10.1016/j.jenvrad.2014.08.014

    Article  CAS  PubMed  Google Scholar 

  12. Sanders CJ, Santos IR, Maher D, Tbreithaupt JL, Smoak JM, Ketterer M, Call M, Sanders L, Eyre BD (2016) Examining 239+240Pu, 210Pb and historical events to determine carbon, nitrogen and phosphorus burial in mangrove sediments of Moreton Bay, Australia. J Environ Radioact 151:623–629. https://doi.org/10.1016/j.jenvrad.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  13. Olley J, Brooks A, Spencer J, Pietsch T, Borombovits D (2013) Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. J Environ Radioact 124:121–129. https://doi.org/10.1016/j.jenvrad.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  14. Vrel A, Boust D, Lesueur P, Deloffre J, Dubrulle-Brunaud C, Solier L, Rozet M, Thouroude C, Cossonnet C, Thomas S (2013) Dating of sediment record at two contrasting sites of the Seine River using radioactivity data and hydrological time series. J Environ Radioact 126:20–31. https://doi.org/10.1016/j.jenvrad.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  15. Putyrskaya V, Klemt E, Röllin S, Astner M, Sahli H (2015) Dating of sediments from four Swiss prealpine lakes with 210Pb determined by gamma-spectrometry: progress and problems. J Environ Radioact 145:78–94. https://doi.org/10.1016/j.jenvrad.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  16. Begy RC, Preoteasa L, Timar-Gabor A, Mihaiescu R, Tãnãselia C, Kelemen S, Simon H (2016) Sediment dynamics and heavy metal pollution history of the Cruhlig Lake (Danube Delta, Romania). J Environ Radioact 153:167–175. https://doi.org/10.1016/j.jenvrad.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  17. Du P, Walling DE (2012) Using 210Pb measurements to estimate sedimentation rates on river floodplains. J Environ Radioact 103:59–75. https://doi.org/10.1016/j.jenvrad.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  18. Remor MB, Sampaio SC, Damatto SR, Castilhos ZC, Stevaux JC, Vilas Boas MA, Dos Reis RR (2015) Geochemistry of the Upper Paraná River floodplain: study of the Garças Pond and Patos Pond. J Radioanal Nucl Chem 305:409–418. https://doi.org/10.1007/s10967-015-4021-9

    Article  CAS  Google Scholar 

  19. Schindler S, Sebesvari Z, Damm C, Euller K, Mauerhofer V, Schneidergruber A, Biró M, Essl F, Kanka R, Lauwaars SG, Schulz-Zunkel C, Van der Sluis T, Kropik M, Gasso V, Krug A, Pusch MT, Zulka KP, Lazowski W, Hainz-Renetzeder C, Henle K, Wrbka T (2014) Multifunctionality of floodplain landscapes: relating management options to ecosystem services. Landsc Ecol 29:229–244. https://doi.org/10.1007/s10980-014-9989-y

    Article  Google Scholar 

  20. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  21. Neiff JJ (1990) Ideas para la interpretacion ecologica del Parana. Interciencia 15:424–441

    Google Scholar 

  22. Bortolini JC, Train S, Rodrigues LC (2016) Extreme hydrological periods: effects on phytoplankton variability and persistence in a subtropical floodplain. Hydrobiologia 763:223–236. https://doi.org/10.1007/s10750-015-2378-y

    Article  Google Scholar 

  23. Simões NR, Nunes AH, Dias JD, Lansac-Tôha FA, Velho LFM, Bonecker CC (2015) Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758:3–17. https://doi.org/10.1007/s10750-015-2260-y

    Article  CAS  Google Scholar 

  24. Dunck B, Schneck F, Rodrigues L (2016) Patterns in species and functional dissimilarity: insights from periphytic algae in subtropical floodplain lakes. Hydrobiologia 763:237–247. https://doi.org/10.1007/s10750-015-2379-x

    Article  Google Scholar 

  25. Schneider B, Cunha ER, Marchese M, Thomaz SM (2015) Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquat Bot 121(67–75):2015. https://doi.org/10.1016/j.aquabot.2014.11.003

    Article  Google Scholar 

  26. Petsch DK, Pinha GD, Dias JD, Takeda AM (2015) Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745:181–193. https://doi.org/10.1007/s10750-014-2105-0

    Article  Google Scholar 

  27. Agostinho AA, Suzuki HI, Fugi R, Alves DC, Tonella LH, Espindola LA (2015) Ecological and life history traits of Hemiodus orthonops in the invasion process: looking for clues at home. Hydrobiologia 746:415–430. https://doi.org/10.1007/s10750-014-2030-2

    Article  Google Scholar 

  28. Stevaux JC, Souza IA (2004) Floodplain construction in an anastomosed river. Quat Int 104:55–65. https://doi.org/10.1016/S1040-6182(03)00042-9

    Article  Google Scholar 

  29. Damatto SR (2009) Dating of lacustrine and marine recent sediments using 210Pb method: some Brazilian examples. In: International topical conference on Po and radioactive Pb isotopes- Sevilla—Espanha, 26–28 Oct 2009, p 12–17

  30. Fávaro DIT, Damatto SR, Moreira EG, Mazzilli BP, Campagnoli F (2007) Chemical characterization and recent sedimentation rates in sediment cores from Rio Grande reservoir, SP. Brazil J Radioanal Nucl Chem 273:451–463. https://doi.org/10.1007/s10967-007-6855-2

    Article  CAS  Google Scholar 

  31. Silva FC (2009) Manual de análises químicas de solos, plantas e fertilizantes, 2nd edn. EMBRAPA, Brasília, p 627

  32. Gilbert ER, Camargo MG, Sandrini-Neto L (2012) rysgran: grain size analysis, textural classifications and distribution of unconsolidated sediments. R package version 2.0

  33. Fávaro DIT, Damatto SR, Silva PSC, Riga AA, Sakamoto AY, Mazzilli BP (2006) Chemical characterization and 210Pb dating in wetland sediments from the Nhecolândia Pantanal Pond, Brazil. J Radioanal Nucl Chem 269:719–726. https://doi.org/10.1007/s10967-006-0292-5

    Article  CAS  Google Scholar 

  34. Godoy JM, Padovani CR, Guimarães JRD, Pereira JCA, Vieira LM, Carvalho ZL, Galdino S (2002) Evaluation of the siltation of river Taquari, Pantanal, Brazil, through 210Pb geochronology of floodplain lake sediments. J Braz Chem Soc 13:71–77. https://doi.org/10.1590/S0103-50532002000100011

    Article  CAS  Google Scholar 

  35. McGlue MM, Silva A, Corradini FA, Zani H, Trees MA, Ellis GS, Parolin M, Swarzenski PW, Cohen AS, Assine ML (2011) Limnogeology in Brazil’s “forgotten wilderness”: a synthesis from the large floodplain lakes of the Pantanal. J Paleolmnol 46:273–289. https://doi.org/10.1007/s10933-011-9538-5

    Article  Google Scholar 

  36. Bonachea J, Bruschi Mv, Hurtado MA, Forte LM, Silva M, Etcheverry R, Cavallotto JL, Dantas MF, Pejon OJ, Zuquette LV, Bezerra MAO, Remondo J, Rivas V, Gómez-Arozamena J, Fernández G, Cendrero A (2010) Natural and human forcing in recent geomorphic change; case studies in the Rio de la Plata basin. Sci Total Environ 408:2674–2695. https://doi.org/10.1016/j.scitotenv.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  37. Stevaux JC, Martins DP, Meurer M (2009) Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 113:230–238. https://doi.org/10.1016/j.geomorph.2009.03.015

    Article  Google Scholar 

  38. Drago EC (1981) Grados de conexión y fases hidrologicas ambientes leniticos de la llanura aluvial del rio Paraná (Argentina). Ecol Argent 6:27–33

    Google Scholar 

  39. Ni Z, Wang S (2015) Historical accumulation and environmental risk of nitrogen and phosphorus in sediments of Erhai Lake, Southwest China. Ecol Eng 79:42–53. https://doi.org/10.1016/j.ecoleng.2015.03.005

    Article  Google Scholar 

  40. Kraushal S, Binford MW (1999) Relationships between C: N ratios of lake sediments, organic matter sources and historical deforestation in Lake Pleasant, Massachusetts, USA. J Paleolimnol 22:439–442. https://doi.org/10.1023/A:1008027028029

    Article  Google Scholar 

  41. Wang LG, Behling H, Chen YM, Huang MS, Chen CTA, Lou JY, Chang YP, Li HC (2014) Holocene monsoonal climate changes tracked by multiproxy approach from a lacustrine sediment core of the subalpine Retreat Lake in Taiwan. Quat Int 333:69–76. https://doi.org/10.1016/j.quaint.2014.02.014

    Article  Google Scholar 

  42. Yang T-N, Lee T-Q, Lee M-Y, Huh C-A, Meyers PA, Löwemark L, Wang L-C, Kao W-Y, Wei K-Y, Chen R-F, Chen H-F, Chen S-H, Wu J-T, Shiau L-J, Chen Y-G, Hsieh Y-C (2014) Paleohydrological changes in northeastern Taiwan over the past 2ky inferred from biological proxies in the sediment record of a floodplain lake. Palaeogeogr Palaeoclimatol Palaeoecol 410:401–411. https://doi.org/10.1016/j.palaeo.2014.06.018

    Article  Google Scholar 

  43. Basso CJ, Ceretta CA, Poletto RDN, Girotto E (2005) Dejeto líquido de suínos: II—Perdas de nitrogênio e fósforo por percolação no solo sob plantio direto. Cienc Rural 35:1305–1312. https://doi.org/10.1590/S0103-84782005000600012

    Article  Google Scholar 

  44. Carstensen J, Sanchez-Camacho M, Duarte CM, Krause-Jensen D, Marb N (2011) Connecting the dots: responses of coastal ecosystems to changing nutrient concentrations. Environ Sci Technol 45:9122–9132. https://doi.org/10.1021/es202351y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cunha JMP (2006) Dinâmica migratória e o processo de ocupação do Centro-Oeste brasileiro: o caso de Mato Grosso. Rev Bras Estud Popul 23:87–107. https://doi.org/10.1590/S0102-30982006000100006

    Article  Google Scholar 

  46. Brock BE, Martin ME, Mongeon CL, Sokal MA, Wesche SD, Armitage D, Wolfe BB, Hall RI, Edwards TWD (2010) Flood frequency variability during the past 80 years in the Slave River Delta, NWT, as determined from multi-proxy paleolimnological analysis. Can Water Resour J 35:281–300. https://doi.org/10.4296/cwrj3503281

    Article  Google Scholar 

  47. MacDonald LA, Wiklund JA, Elmes MC, Wolfe BB, Hall RI (2016) Paleolimnological assessment of riverine and atmospheric pathways and sources of metal deposition at a floodplain lake (Slave River Delta, Northwest Territories, Canada). Sci Total Environ 544:811–823. https://doi.org/10.1016/j.scitotenv.2015.11.173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Bevilacqua Remor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remor, M.B., Vilas Boas, M.A., Sampaio, S.C. et al. Sedimentation rate and accumulation of nutrients in the Upper Paraná river floodplain. J Radioanal Nucl Chem 331, 1019–1027 (2022). https://doi.org/10.1007/s10967-021-08153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08153-5

Keywords

Navigation