Skip to main content
Log in

Schiff base-functionalized mesoporous titania: an efficient sorbent for the removal of radioactive thorium ions from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A Schiff base modified titania (Sal-TiO2) was synthesized and evaluated for eliminating of radioactive Th (IV) ions in comparison with plain TiO2. Thermodynamic studies exhibited that sorption process is entropy-driven onto studied sorbents. Sal-TiO2 exhibited enhanced adsorption properties, and ΔG° of the Sal-TiO2 was around 36% lower. Investigation of linear forms of Langmuir, Freundlich, and Redlich–Peterson adsorption isotherms demonstrated that the adsorption mechanism was in accordance with the Freundlich model. The kinetics of the adsorption onto adsorbents could be well interpreted by pseudo-second-order model. Kinetic and thermodynamic data have been predicted that physisorption is the most possible mechanism for adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aziman ES, Mohd Salehuddin AHJ, Ismail AF (2021) Remediation of thorium (IV) from wastewater: current status and way forward. Sep Purif Rev 50(2):177–202

    Article  CAS  Google Scholar 

  2. Humphrey UE, Khandaker MU (2018) Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: issues and prospects. Renew Sustain Energy Rev 97:259–275

    Article  CAS  Google Scholar 

  3. Darda SA, Gabbar HA, Damideh V, Aboughaly M, Hassen I (2021) A comprehensive review on radioactive waste cycle from generation to disposal. J Radioanal Nucl Chem 329:33

    Article  CAS  Google Scholar 

  4. Rahman R, Ibrahium H, Hung Y-T (2011) Liquid radioactive wastes treatment: a review. Water 3(2):551–565

    Article  Google Scholar 

  5. Gao M, Zhu G, Gao C (2014) A review: adsorption materials for the removal and recovery of uranium from aqueous solutions. Energy Environ Focus 3(3):219–226

    Article  Google Scholar 

  6. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat M (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Coll Interface Sci 193:24–34

    Article  Google Scholar 

  7. Li Y, He H, Liu Z, Lai Z, Wang Y (2021) A facile method for preparing three-dimensional graphene nanoribbons aerogel for uranium (VI) and thorium (IV) adsorption. J Radioanal Nucl Chem 328(1):289–298

    Article  CAS  Google Scholar 

  8. Anirudhan T, Sreekumari S, Jalajamony S (2013) An investigation into the adsorption of thorium (IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J Environ Radioact 116:141–147

    Article  CAS  PubMed  Google Scholar 

  9. Xu H, Li G, Li J, Chen C, Ren X (2016) Interaction of Th (IV) with graphene oxides: batch experiments, XPS investigation, and modeling. J Mol Liq 213:58–68

    Article  CAS  Google Scholar 

  10. Tatarchuk T, Shyichuk A, Mironyuk I, Naushad M (2019) A review on removal of uranium (VI) ions using titanium dioxide based sorbents. J Mol Liq 293:111563

    Article  CAS  Google Scholar 

  11. Paschalidou P, Liatsou I, Pashalidis I, Theocharis CR (2017) Effect of surface and textural characteristics on uranium adsorption by nanoporous titania. J Radioanal Nucl Chem 314(2):1141–1147

    Article  CAS  Google Scholar 

  12. Wang J, He B, Wei X, Li P, Liang J, Qiang S, Fan Q, Wu W (2019) Sorption of uranyl ions on TiO2: effects of pH, contact time, ionic strength, temperature and HA. J Environ Sci 75:115–123

    Article  CAS  Google Scholar 

  13. Altaf AA, Ahmed M, Hamayun M, Kausar S, Waqar M, Badshah A (2020) Titania nano-fibers: a review on synthesis and utilities. Inorg Chim Acta 501:119268

    Article  CAS  Google Scholar 

  14. Tel H, Altaş Y, Taner M (2004) Adsorption characteristics and separation of Cr (III) and Cr (VI) on hydrous titanium (IV) oxide. J Hazard Mater 112(3):225–231

    Article  CAS  PubMed  Google Scholar 

  15. Cozzi PG (2004) Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33(7):410–421

    Article  CAS  PubMed  Google Scholar 

  16. Masjedi M, Mir N, Noori E, Gholami T, Salavati-Niasari M (2013) Effect of Schiff base ligand on the size and the optical properties of TiO2 nanoparticles. Superlattices Microstruct 62:30–38

    Article  CAS  Google Scholar 

  17. Shiri-Yekta Z, Yaftian MR, Nilchi A (2013) Silica nanoparticles modified with a Schiff base ligand: an efficient adsorbent for Th (IV), U (VI) and Eu (III) ions. Korean J Chem Eng 30(8):1644–1651

    Article  CAS  Google Scholar 

  18. Janitabar Darzi S, Abdolmohammadi S, Latifi M (2020) Green removal of toxic Th (IV) by amino-functionalized mesoporous TiO2-SiO2 nanocomposite. Iran J Chem Chem Eng (IJCCE) 39(2):191–202

    Google Scholar 

  19. Meroni D, Lo Presti L, Di Liberto G, Ceotto M, Acres RG, Prince KC, Bellani R, Soliveri G, Ardizzone S (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study. J Phys Chem C 121(1):430–440

    Article  CAS  Google Scholar 

  20. Milanesi F, Cappelletti G, Annunziata R, Bianchi C, Meroni D, Ardizzone S (2010) Siloxane−TiO2 hybrid nanocomposites. The structure of the hydrophobic layer. J Phys Chem C 114(18):8287–8293

    Article  CAS  Google Scholar 

  21. Zeitler VA, Brown CA (1957) The infrared spectra of some Ti–O–Si, Ti–O–Ti and Si–O–Si compounds. J Phys Chem 61(9):1174–1177

    Article  CAS  Google Scholar 

  22. Shen Z, Zhou H, Chen H, Xu H, Feng C, Zhou X (2018) Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange. Nanomaterials 8(5):317

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mokhtari M, Keshtkar AR (2016) Removal of Th (IV), Ni (II) and Fe (II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Res Chem Intermed 42(5):4055–4076

    Article  CAS  Google Scholar 

  24. Saravanan P, Jayamoorthy K, Kumar SA (2016) Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci Adv Mater Devices 1(3):367–378

    Article  Google Scholar 

  25. Zhang D, Hegab HE, Lvov Y, Snow LD, Palmer J (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus 5(1):1–20

    Google Scholar 

  26. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4(4):559–566

    Article  CAS  Google Scholar 

  27. Kruk M, Jaroniec M, Sayari A (1997) Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13(23):6267–6273

    Article  CAS  Google Scholar 

  28. Yavari R, Asadollahi N, Mohsen MA (2017) Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. Prog Nucl Energy 100:183–191

    Article  CAS  Google Scholar 

  29. Li S, Wang L, Peng J, Zhai M, Shi W (2019) Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem Eng J 366:192–199

    Article  CAS  Google Scholar 

  30. Ma F, Qu R, Sun C, Wang C, Ji C, Zhang Y, Yin P (2009) Adsorption behaviors of Hg (II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers. J Hazard Mater 172(2–3):792–801

    Article  CAS  PubMed  Google Scholar 

  31. Lakkaboyana SK, Soontarapa K, Marella RK, Kannan K (2021) Preparation of novel chitosan polymeric nanocomposite as an efficient material for the removal of Acid Blue 25 from aqueous environment. Int J Biol Macromol 168:760–768

    Article  CAS  PubMed  Google Scholar 

  32. Wu L, Ye Y, Liu F, Tan C, Liu H, Wang S, Wang J, Yi W, Wu W (2013) Organo-bentonite-Fe3O4 poly (sodium acrylate) magnetic superabsorbent nanocomposite: synthesis, characterization, and Thorium (IV) adsorption. Appl Clay Sci 83:405–414

    Article  Google Scholar 

  33. Guo Z, Liu X, Huang H (2015) Kinetics and thermodynamics of reserpine adsorption onto strong acidic cationic exchange fiber. PLoS ONE 10(9):e0138619

    Article  PubMed  PubMed Central  Google Scholar 

  34. da Costa ACA, Leite SGF (1991) Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotech Lett 13(8):559–562

    Article  Google Scholar 

  35. Oliveira LM, Oliveira LF, Sonsin AF, Duarte JL, Soletti JI, Fonseca EJ, Ribeiro LM, Meili L (2020) Ultrafast diesel oil spill removal by fibers from silk-cotton tree: Characterization and sorption potential evaluation. J Clean Prod 263:121448

    Article  CAS  Google Scholar 

  36. Abbasizadeh S, Keshtkar AR, Mousavian MA (2013) Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem Eng J 220:161–171

    Article  CAS  Google Scholar 

  37. Bullen JC, Saleesongsom S, Gallagher K, Weiss DJ (2021) A revised pseudo-second-order kinetic model for adsorption, sensitive to changes in adsorbate and adsorbent concentrations. Langmuir 37(10):3189–3201

    Article  CAS  PubMed  Google Scholar 

  38. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano-zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  PubMed  Google Scholar 

  39. Rajahmundry GK, Garlapati C, Kumar PS, Alwi RS, Vo D-VN (2021) Statistical analysis of adsorption isotherm models and its appropriate selection. Chemosphere 276:130176

    Article  CAS  PubMed  Google Scholar 

  40. Zubair M, Aziz HA, Ahmad MA, Ihsanullah I, Al-Harthi MA (2021) Adsorption and reusability performance of M-Fe (M = Co, Cu, Zn and Ni) layered double hydroxides for the removal of hazardous Eriochrome Black T dye from different water streams. J Water Process Eng 42:102060

    Article  Google Scholar 

  41. Wu F-C, Liu B-L, Wu K-T, Tseng R-L (2010) A new linear form analysis of Redlich–Peterson isotherm equation for the adsorptions of dyes. Chem Eng J 162(1):21–27

    Article  CAS  Google Scholar 

  42. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater 393:122383

    Article  CAS  PubMed  Google Scholar 

  43. Veličković Z, Vuković GD, Marinković AD, Moldovan M-S, Perić-Grujić AA, Uskoković PS, Ristić MĐ (2012) Adsorption of arsenate on iron (III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181:174–181

    Article  Google Scholar 

  44. Kaynar ÜH, Ayvacıklı M, Hiçsönmez Ü, Kaynar SÇ (2015) Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies. J Environ Radioact 150:145–151

    Article  CAS  PubMed  Google Scholar 

  45. Kapashi E, Kapnisti M, Dafnomili A, Noli F (2019) Aloe Vera as an effective biosorbent for the removal of thorium and barium from aqueous solutions. J Radioanal Nucl Chem 321(1):217–226

    Article  CAS  Google Scholar 

  46. Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Zhang M, Zhang Q (2020) Highly efficacious entrapment of Th (IV) and U (VI) from rare earth elements in concentrated nitric acid solution using a phosphonic acid functionalized porous organic polymer adsorbent. Sep Purif Technol 237:116379

    Article  CAS  Google Scholar 

  47. Hamdy G, El-Sabbagh IA, Taher F (2021) Highly efficient sorption of thorium (IV) onto a ternary magnetic TiO2/Fe3O4/GO nanocomposite. Mater Today Proc 42:2218–2226

    Article  Google Scholar 

  48. Mahanty B, Mohapatra PK (2020) Highly efficient separation of thorium from uranium in nitric acid feeds by solid phase extraction using Aliquat 336. Sep Purif Technol 237:116318

    Article  CAS  Google Scholar 

  49. Al-Massaedh AA, Khalili FI (2021) Removal of thorium (IV) ions from aqueous solution by polyacrylamide-based monoliths: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 327(3):1201–1217

    Article  CAS  Google Scholar 

  50. Hu K, Liu Z, Xiu T, Zhou L, Wang Y (2020) Removal of thorium from aqueous solution by adsorption with Cu3(BTC)2. J Radioanal Nucl Chem 326(1):185–192

    Article  CAS  Google Scholar 

  51. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  52. Xiu T, Liu Z, Yang L, Wang Y (2019) Removal of thorium and uranium from aqueous solution by adsorption on hydrated manganese dioxide. J Radioanal Nucl Chem 321(2):671–681

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Janitabar Darzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefipour, K., Janitabar Darzi, S. & Iravani, E. Schiff base-functionalized mesoporous titania: an efficient sorbent for the removal of radioactive thorium ions from aqueous solution. J Radioanal Nucl Chem 332, 2447–2458 (2023). https://doi.org/10.1007/s10967-021-08131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08131-x

Keywords

Navigation