Skip to main content
Log in

Effect of high-dose γ-ray irradiation on the structural stability and U(VI) adsorption ability of bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Bentonite was irradiated with 60Co γ-rays at a dose rate of 10 kGy/h to achieve irradiation doses of 1, 2, 3 MGy and was characterized to evaluate its stability before and after irradiation and understand the radiation damage mechanism. The structure of the bentonite was slightly affected by high doses of irradiation, and the U(VI) adsorption capacity of the irradiated bentonite was reduced compared to that of raw bentonite. Overall, this study provides insights into the negative effects of high-dose γ-ray irradiation on the stability and adsorption capacity of bentonite, which has safety implications for the storage of radioactive waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen Y, Zhu C, Sun Y et al (2012) Adsorption of La (III) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength. J Radioanal Nucl Chem 292(3):1339–1347. https://doi.org/10.1007/s10967-012-1612-6

    Article  CAS  Google Scholar 

  2. Galamboš M, Daňo M, Rosskopfová O, Šeršeň F, Kufčáková J, Adamcová R, Rajec P (2012) Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J Radioanal Nucl Chem 292(2):481–492. https://doi.org/10.1007/s10967-012-1638-9

    Article  CAS  Google Scholar 

  3. Ploetze M, Kahr G, Stengele RH (2003) Alteration of clay minerals—gamma-irradiation effects on physicochemical properties. Appl Clay Sci 23:195–202. https://doi.org/10.1016/S0169-1317(03)00103-0

    Article  CAS  Google Scholar 

  4. Reed DT, Bonar SD, Weiner MF (1987) Gamma and alpha radiation levels in a basalt high-level waste repository: potential impact on container corrosion and packing properties. Coupled Process Assoc Nucl Waste Reposit 32:325–338. https://doi.org/10.1016/B978-0-12-701620-7.50028-3

    Article  Google Scholar 

  5. Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21:117–123. https://doi.org/10.1016/S0169-1317(01)00097-7

    Article  CAS  Google Scholar 

  6. Negron A, Ramos S, Blumenfeld AL, Pacheco G, Fripiat JJ (2002) On the structural stability of montmorillonite submitted to heavy γ-irradiation. Clays Clay Miner 50:35–37. https://doi.org/10.1346/000986002761002649

    Article  CAS  Google Scholar 

  7. Corbett WJ, Burson JH, Young RA (1961) Gamma-irradiation of kaolinite. Charles Griffin & Co., Glasgow, pp 344–355. https://doi.org/10.1346/CCMN.1961.0100130

    Book  Google Scholar 

  8. Wang H, Sun Y, Chu J, Wang X, Zhang M (2020) Crystalline structure variation within phlogopite, muscovite and talc under 0–1000kGy γ ray irradiation: A clear dependence on intrinsic characteristic. Appl Clay Sci 187:105475. https://doi.org/10.1016/j.clay.2020.105475

    Article  CAS  Google Scholar 

  9. Wang H, Sun Y, Chu J, Wang X, Zhang M (2019) Intensive study on structure transformation of muscovite single crystal under high-dose γ-ray irradiation and mechanism speculation. R Soc Open Sci. https://doi.org/10.1098/rsos.190594

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang H, Sun Y, Jian C, Xu W, Ming Z (2019) Intensive evaluation of radiation stability of phlogopite single crystals under high doses of γ-ray irradiation. RSC Adv 9:6199–6210. https://doi.org/10.1039/C8RA08565J

    Article  CAS  Google Scholar 

  11. Sari A, Tuzen M (2008) Removal of Cr(VI) from aqueous solution by Turkish vermiculite: equilibrium, thermodynamic and kinetic studies. Sep Sci Technol 43:3563–3581. https://doi.org/10.1080/01496390802222657

    Article  CAS  Google Scholar 

  12. Xiao J, Chen Y, Zhao W, Xu J (2013) Sorption behavior of U(VI) onto Chinese bentonite: effect of pH, ionic strength, temperature and humic acid. J Mol Liq 188:178–185. https://doi.org/10.1016/j.molliq.2013.10.008

    Article  CAS  Google Scholar 

  13. Li S, Wang X, Huang Z, Du L, Tan Z, Fu Y, Wang X (2016) Sorption and desorption of uranium(VI) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances. J Radioanal Nucl Chem 308:877–886. https://doi.org/10.1007/s10967-015-4513-7

    Article  CAS  Google Scholar 

  14. Qiao Z, Liu Q, Zhang S, Wu Y (2019) The mineralogical characteristics between opaline silica in bentonite and α-cristobalite. Solid State Sci 96:105948. https://doi.org/10.1016/j.solidstatesciences.2019.105948

    Article  CAS  Google Scholar 

  15. Correcher V, Garcia-Guinea J, Bustillo MA, Garcia R (2009) Study of the thermoluminescence emission of a natural α-cristobalite. Radiat Eff Defects Solids 164:59–67. https://doi.org/10.1080/10420150802270995

    Article  CAS  Google Scholar 

  16. Chen Y, Zhu C, Sun Y, Duan H, Ye W, Wu D (2012) Adsorption of La(III) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength. J Radioanal Nucl Chem 292:1339–1347. https://doi.org/10.1007/s10967-012-1612-6

    Article  CAS  Google Scholar 

  17. Hu J, Tan X, Ren X, Wang X (2012) Effect of humic acid on nickel(II) sorption to Ca-montmorillonite by batch and EXAFS techniques study. Dalton T 41:10803–10810. https://doi.org/10.1039/c2dt31057k

    Article  CAS  Google Scholar 

  18. Perez JJ, Villanueva ME, Sánchez L, Ollier R, Copello GJ (2020) Low cost and regenerable composites based on chitin/bentonite for the adsorption potential emerging pollutants. Appl Clay Sci 194:105703. https://doi.org/10.1016/j.clay.2020.105703

    Article  CAS  Google Scholar 

  19. Banu T, Karthikeyan P, Vigneshwaran S, Meenakshi S (2020) Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.03.074

    Article  PubMed  Google Scholar 

  20. Tanc B, Orakdogen N (2019) Charged groups synergically enhanced elasticity and tunable swelling/shrinking of poly(dialkylaminoethyl methacrylate)/layered silicate nanocomposite cryogels. Polymer 178:121627. https://doi.org/10.1016/j.polymer.2019.121627

    Article  CAS  Google Scholar 

  21. Ren HP, Tian SP, Zhu M, Zhao YZ, Li KX, Ma Q, Ding SY, Gao J, Miao Z (2018) Modification of montmorillonite by Gemini surfactants with different chain lengths and its adsorption behavior for methyl orange. Appl Clay Sci 151:29–36. https://doi.org/10.1016/j.clay.2017.10.024

    Article  CAS  Google Scholar 

  22. Wang H, Sun Y, Chu J, Wang X, Zhang M (2020) An intensive exploration on structure transformation of talc under γ-ray irradiation at 0–1000 kGy. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07226-1

    Article  Google Scholar 

  23. Duan S, Wang Y, Liu X, Shao D, Hayat T, Alsaedi A, Li J (2017) Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustain Chem Eng 5:4073–4085. https://doi.org/10.1021/acssuschemeng.7b00069

    Article  CAS  Google Scholar 

  24. Zeng H, Wang L, Zhang D, Wang F, Sharma VK, Wang C (2019) Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. J Colloid Interf Sci 554:479–487. https://doi.org/10.1016/j.jcis.2019.07.029

    Article  CAS  Google Scholar 

  25. Sun C, Chen T, Huang Q, Wang J, Lu S, Yan J (2019) Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environ Sci Pollut R. https://doi.org/10.1007/s11356-019-04321-z

    Article  Google Scholar 

  26. Yan K, Wang Y, Haiying Z (2019) Lignin xanthate resin-bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. J Hazard Mater 368:33–41. https://doi.org/10.1016/j.jhazmat.2019.01.026

    Article  CAS  Google Scholar 

  27. Tang W, Zhang S, Sun J, Li H, Liu X, Gu X (2017) Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite. Thermochim Acta 648:1–12. https://doi.org/10.1016/j.tca.2016.12.007

    Article  CAS  Google Scholar 

  28. Zhang N, Ejtemaei M, Nguyen AV, Zhou C (2019) XPS analysis of the surface chemistry of sulfuric acid-treated kaolinite and diaspore minerals with flotation reagents. Miner Eng 136:1–7. https://doi.org/10.1016/j.mineng.2019.03.002

    Article  CAS  Google Scholar 

  29. Iatsunskyi I, Kempiński M, Jancelewicz M, Za Ski K, Jurga S, Smyntyna V (2015) Structural and XPS characterization of ALD Al2O3 coated porous silicon. Vacuum 113:52–58. https://doi.org/10.1016/j.vacuum.2014.12.015

    Article  CAS  Google Scholar 

  30. Narayanan DP, Gopalakrishnan A, Yaakob Z, Sugunan S, Narayanan BN (2017) A facile synthesis of clay-graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arab J Chem 13:318–334. https://doi.org/10.1016/j.arabjc.2017.04.011

    Article  CAS  Google Scholar 

  31. Fenglian J, Tang B, Ding Z (2017) Removal mechanism of selenite by Fe3O4-precipitated mesoporous magnetic carbon microspheres. J Hazard Mater 330:93–104. https://doi.org/10.1016/j.jhazmat.2017.01.056

    Article  CAS  Google Scholar 

  32. Smg A, Smk A, Gsrr B, Mn C, Scja D, Hjy E, Stl F, Ykh B, Cr D, Yun S (2019) γ-Radiolysis as a highly efficient green approach to the synthesis of metal nanoclusters: a review of mechanisms and applications. Chem Eng J 360:1390–1406. https://doi.org/10.1016/j.cej.2018.10.164

    Article  CAS  Google Scholar 

  33. Wan D, Li W, Wang G, Chen K, Lu L, Hu Q (2015) Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material. Appl Surf Sci 349:988–996. https://doi.org/10.1016/j.apsusc.2015.05.004

    Article  CAS  Google Scholar 

  34. Mckay Y (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  35. Ding C, Cheng W, Wang X, Wu ZY, Sun Y, Chen C, Wang X, Yu SH (2016) Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: a spectroscopic and modeling approach. J Hazard Mater 313:253–261. https://doi.org/10.1016/j.jhazmat.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  36. Zhao D, Yang S, Chen S, Guo Z, Xin Y (2011) Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite. J Radioanal Nucl Chem 287:557–565. https://doi.org/10.1007/s10967-010-0846-4

    Article  CAS  Google Scholar 

  37. Zhou L, Ouyang J, Liu Z, Huang G, Wang Y, Li Z, Adesina AA (2019) Highly efficient sorption of U(VI) from aqueous solution using amino/amine-functionalized magnetic mesoporous silica nanospheres. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6381-4

    Article  Google Scholar 

  38. Tobilko V (2019) Spasonova, Larysa, Kovalchuk, Iryna, Kornilovych, Borys, Kholodko, Yurij, Adsorption of Uranium (VI) from Aqueous Solutions by Amino-functionalized Clay Minerals. Colloids Interfaces 3:41. https://doi.org/10.3390/colloids3010041

    Article  CAS  Google Scholar 

  39. Leng Y, Henderson MJ, Courtois J, Li H, Xiong K, Tuo X, Yan M (2016) Sorption of plutonium on geological materials associated with a Chinese radioactive waste repository: influence of pH. J RADIOANAL NUCL CH 308:895–903. https://doi.org/10.1007/s10967-015-4594-3

    Article  CAS  Google Scholar 

  40. Langmuir I (2015) The Adsorption of Gases on Plane Surfaces of Glass. Mica and Platinum, J CHEM PHYS 40:1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  41. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  42. Hu W, Lu S, Song W, Chen T, Hayat T, Alsaedi NS, Chen C, Liu H (2018) Competitive adsorption of U(VI) and Co(II) on montmorillonite: a batch and spectroscopic approach - ScienceDirect. Appl Clay Sci 157:121–129. https://doi.org/10.1016/j.clay.2018.02.030

    Article  CAS  Google Scholar 

  43. Zhou L, Ouyang J, Hamza S, Le Z, Li Z, Adesina AA (2018) Adsorption of U(VI) onto the carboxymethylated chitosan/Na-bentonite membranes: kinetic, isothermic and thermodynamic studies. J Radioanal Nucl Chem 317:1–9. https://doi.org/10.1007/s10967-018-6009-8

    Article  CAS  Google Scholar 

  44. Guimar Es V, Rodríguez-Castellón E, Algarra M, Rocha F, Bobos I (2016) Kinetics of uranyl ions sorption on heterogeneous smectite structure at pH4 and 6 using a continuous stirred flow-through reactor. Appl Clay Sci. https://doi.org/10.1016/j.clay.2016.03.028

    Article  Google Scholar 

  45. Hao X, Chen R, Liu Qi, Jingyuan Z, Hongsen J (2018) A novel U(vi)-imprinted graphitic carbon nitride composite for the selective and efficient removal of U(VI) from simulated seawater. Inorg Chem Front 5:2218–2226. https://doi.org/10.1039/C8QI00522B

    Article  CAS  Google Scholar 

  46. Zhang R, Chen C, Li J, Wang X (2015) Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Appl Surf Sci 349:129–137. https://doi.org/10.1016/j.apsusc.2015.04.222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Opening Fund of Provincial Key Lab of Applied Nuclear Techniques in Geosciences (No. gnzds202102) and Sichuan Science and Technology Program (No. 2020JDRC0112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Tuo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Gu, R., He, P. et al. Effect of high-dose γ-ray irradiation on the structural stability and U(VI) adsorption ability of bentonite. J Radioanal Nucl Chem 331, 339–352 (2022). https://doi.org/10.1007/s10967-021-08117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08117-9

Keywords

Navigation