Skip to main content
Log in

Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Novel KMnO4-treated magnetic biochar (FMBC) was successfully synthesized by addition of Fe(NO3)3 during carbonization and KMnO4 treatment following for Pb(II) and Cd(II) adsorption. SEM-EDS, XPS, and ICP-AES were used to evaluate the FMBC and magnetic biochar (FBC) on surface morphology, surface chemistry characteristics, surface functional groups, and Pb(II) and Cd(II) adsorption behavior. Results showed that the Langmuir maximum adsorption quantity of FMBC reached 148 mg/g for Pb(II) and 79 mg/g for Cd(II), nearly 7 times of that of FBC. The enhancement of FMBC for heavy metal adsorption was due to the successful load of manganese oxides and the increased oxygen functional groups consistent with XPS and FTIR results. The adsorption capacities of FMBC were maintained over 95% when the pH value was higher than 2.5 and 3.5 for Pb(II) and Cd(II), respectively. The adsorption performances of both heavy metals by FMBC were hardly influenced by ionic strength and humid acid. The adsorption capacities of FMBC could maintain over 50% and 87% after four cycles for Pb(II) and Cd(II), respectively. The saturation magnetization of FMBC was about 11.5 emu/g, which did not change after adsorption. This work proposed a new method to fabricate a magnetic biochar with high adsorption capacities of heavy metals Pb(II) and Cd(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  Google Scholar 

  • Ahn SY, Eom SY, Rhie YH, Sung YM, Moon CE, Choi GM, Kim DJ (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207–216

    Article  Google Scholar 

  • Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17

    Article  CAS  Google Scholar 

  • Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1(9):1102–1109

    Article  CAS  Google Scholar 

  • Cao Y, Huang J, Peng X, Cao D, Galaska A, Qiu S, Liu J, Khan MA, Young DP, Ryu JE, Feng H, Yerra N, Guo Z (2017) Poly(vinylidene fluoride) derived fluorine-doped magnetic carbon nanoadsorbents for enhanced chromium removal. Carbon 115:503–514

    Article  CAS  Google Scholar 

  • Cui X, Fang S, Yao Y, Li T, Ni Q, Yang X, He Z (2016) Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ 562:517–525

    Article  CAS  Google Scholar 

  • Da̧browski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  CAS  Google Scholar 

  • Edathil AA, Shittu I, Hisham Zain J, Banat F, Haija MA (2018) Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions. J Environ Chem Eng 6(2):2390–2400

    Article  CAS  Google Scholar 

  • Faheem, Yu, H., Liu, J., Shen, J., Sun, X., Li, J., Wang, L. 2016a. Preparation of MnO x -loaded biochar for Pb 2+ removal: adsorption performance and possible mechanism. J Taiwan Inst Chem Eng, 66, 313–320

  • Faheem YH, Liu J, Shen J, Sun X, Li J, Wang L (2016b) Preparation of MnOx-loaded biochar for Pb2+ removal: adsorption performance and possible mechanism. J Taiwan Inst Chem Eng 66:313–320

    Article  CAS  Google Scholar 

  • Faria PCC, Orfao JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research 38(8):2043–2052

    Article  CAS  Google Scholar 

  • Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Res 42(6–7):1343–1368

    Article  CAS  Google Scholar 

  • Han R, Zou W, Zhang Z, Shi J, Yang J (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. J Hazard Mater 137(1):384–395

    Article  CAS  Google Scholar 

  • Han Z, Sani B, Mrozik W, Obst M, Beckingham B, Karapanagioti HK, Werner D (2015) Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res 70:394–403

    Article  CAS  Google Scholar 

  • Hao W, Björkman E, Lilliestråle M, Hedin N (2013) Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energy 112:526–532

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Hu X-j, Wang J-s, Liu Y-g, Li X, Zeng G-m, Bao Z-l, Zeng X-x, Chen A-w, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185(1):306–314

    Article  CAS  Google Scholar 

  • Ibrahim M, Hameed AJ, Jalbout A (2008) Molecular spectroscopic study of River Nile sediment in the greater Cairo region. Appl Spectrosc 62(3):306–311

    Article  CAS  Google Scholar 

  • Jayalakshmi A, Rajesh S, Senthilkumar S, Mohan D (2012) Epoxy functionalized poly(ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions. Sep Purif Technol 90(18):120–132

    Article  CAS  Google Scholar 

  • Jha, M.K., Kumar, V., Jeong, J., Lee, J.-c. 2012. Review on solvent extraction of cadmium from various solutions. Hydrometallurgy, 111, 1–9

  • Jiménez-Cedillo MJ, Olguín MT, Fall C, Colin-Cruz A (2013) As(III) and as(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). J Environ Manag 117:242–252

    Article  CAS  Google Scholar 

  • Karunanayake AG, Todd OA, Crowley M, Ricchetti L, Pittman CU, Anderson R, Mohan D, Mlsna T (2018) Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chem Eng J 331:480–491

    Article  CAS  Google Scholar 

  • Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T (2012) Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today 190(1):122–132

    Article  CAS  Google Scholar 

  • Kavak D (2013) Removal of lead from aqueous solutions by precipitation: statistical analysis and modeling. Desalination Water Treat 51(7–9):1720–1726

    Article  CAS  Google Scholar 

  • Klüpfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48(10):5601–5611

    Article  CAS  Google Scholar 

  • Kushwaha JP, Srivastava VC, Mall ID (2010) Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Sep Purif Technol 76(2):198–205

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Liu J, Ge X, Ye X, Wang G, Zhang H, Zhou H, Zhang Y, Zhao H (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem A 4(5):1970–1979

    Article  CAS  Google Scholar 

  • Lu J, Fu F, Ding Z, Li N, Tang B (2017) Removal mechanism of selenite by Fe3O4-precipitated mesoporous magnetic carbon microspheres. J Hazard Mater 330:93–104

    Article  CAS  Google Scholar 

  • Mohan D, Kumar S, Srivastava A (2014) Fluoride removal from ground water using magnetic and nonmagnetic corn Stover biochars. Ecol Eng 73:798–808

    Article  Google Scholar 

  • Mohan D, Singh P, Sarswat A, Steele PH, Pittman CU (2015) Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. J Colloid Interface Sci 448:238–250

    Article  CAS  Google Scholar 

  • O'Reilly SE, Hochella MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487

    Article  CAS  Google Scholar 

  • O'Reilly SE, Jr MFH (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487

    Article  CAS  Google Scholar 

  • Ouyang D, Yan J, Qian L, Chen Y, Han L, Su A, Zhang W, Ni H, Chen M (2017) Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate. Chemosphere 184:609–617

    Article  CAS  Google Scholar 

  • Pehlivan E, Yanık BH, Ahmetli G, Pehlivan M (2008) Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour Technol 99(9):3520–3527

    Article  CAS  Google Scholar 

  • Polat H, Erdogan D (2007) Heavy metal removal from waste waters by ion flotation. J Hazard Mater 148(1):267–273

    Article  CAS  Google Scholar 

  • Qiu B, Gu H, Yan X, Guo J, Wang Y, Sun D, Wang Q, Khan M, Zhang X, Weeks BL, Young DP, Guo Z, Wei S (2014) Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. J Mater Chem A 2(41):17454–17462

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DCW, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Reddy DHK, Lee SM (2014) Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids & Surfaces A Physicochemical & Engineering Aspects 454(1):96–103

    Article  CAS  Google Scholar 

  • Sheng G, Wang S, Hu J, Lu Y, Li J, Dong Y, Wang X (2009) Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids & Surfaces A Physicochemical & Engineering Aspects 339(1):159–166

    Article  CAS  Google Scholar 

  • Son E-B, Poo K-M, Chang J-S, Chae K-J (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168

    Article  CAS  Google Scholar 

  • Song Z, Lian F, Yu Z, Zhu L, Xing B, Qiu W (2014) Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chem Eng J 242:36–42

    Article  CAS  Google Scholar 

  • Tan X-f, Liu S-b, Liu Y-g, Gu Y-l, Zeng G-m, Hu X-j, Wang X, Liu S-h, Jiang L-h (2017) Biochar as potential sustainable precursors for activated carbon production: multiple applications in environmental protection and energy storage. Bioresour Technol 227:359–372

    Article  CAS  Google Scholar 

  • Tan X-f, Liu Y-g, Gu Y-l, Xu Y, Zeng G-m, Hu X-j, Liu S-b, Wang X, Liu S-m, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212(Supplement C):318–333

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85

    Article  CAS  Google Scholar 

  • Tang W, Wu X, Li D, Wang Z, Liu G, Liu H, Chen Y (2014) Oxalate route for promoting activity of manganese oxide catalysts in total VOCs' oxidation: effect of calcination temperature and preparation method. J Mater Chem A 2(8):2544–2554

    Article  CAS  Google Scholar 

  • Tiwari D, Laldanwngliana C, Choi C-H, Lee SM (2011) Manganese-modified natural sand in the remediation of aquatic environment contaminated with heavy metal toxic ions. Chem Eng J 171(3):958–966

    Article  CAS  Google Scholar 

  • Tripathy SS, Kanungo SB (2005) Adsorption of Co2+, Ni2+, Cu2+ and Zn2+ from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO2 and amorphous FeOOH. J Colloid Interface Sci 284(1):30–38

    Article  CAS  Google Scholar 

  • Wang H, Gao B, Wang S, Fang J, Xue Y, Yang K (2015a) Removal of Pb(II), cu(II), and cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour Technol 197:356–362

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Li Y, Mosa A, Zimmerman AR, Ma LQ, Harris WG, Migliaccio KW (2015b) Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol 181:13–17

    Article  CAS  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015c) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395

    Article  CAS  Google Scholar 

  • Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015d) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317

    Article  CAS  Google Scholar 

  • Weng S (2016) Fourier transform infrared spectroscopy 3rd edition, 2016.4 Chemical Industry Press, (P 495)

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:9

    Article  CAS  Google Scholar 

  • Wu J, Huang D, Liu X, Meng J, Tang C, Xu J (2018) Remediation of as(III) and cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J Hazard Mater 348:10–19

    Article  CAS  Google Scholar 

  • Yeo J, Kim D-h, Bokare AD, Choi W (2012) Photochemical removal of hexavalent chromium through iodide oxidation under 254nm irradiation. Sep Purif Technol 91:18–22

    Article  CAS  Google Scholar 

  • Zhang C, Shan B, Tang W, Zhu Y (2017a) Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour Technol 238:352–360

    Article  CAS  Google Scholar 

  • Zhang C, Shan B, Tang W, Zhu Y (2017b) Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresour Technol 238:352–360

    Article  CAS  Google Scholar 

  • Zhang J, Han J, Wang M, Guo R (2017c) Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions. J Mater Chem A 5(8):4058–4066

    Article  CAS  Google Scholar 

  • Zhang S, Dong Q, Zhang L, Xiong Y, Liu X, Zhu S (2015a) Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating. Bioresour Technol 193:442–448

    Article  CAS  Google Scholar 

  • Zhang YJ, Ou JL, Duan ZK, Xing ZJ, Wang Y (2015b) Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids & Surfaces A Physicochemical & Engineering Aspects 481:108–116

    Article  CAS  Google Scholar 

  • Zhao D, Yang X, Zhang H, Chen C, Wang X (2010) Effect of environmental conditions on Pb(II) adsorption on β-MnO2. Chem Eng J 164(1):49–55

    Article  CAS  Google Scholar 

  • Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z (2017) Adsorption properties of Nano-MnO2-biochar composites for copper in aqueous solution. Molecules 22(1):173

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Key Research and Development Program of China (2016YFD0801104), the Fundamental Research Funds for the Central Universities (No. 2016XZZX002-02, No. 2017FZA4013), National Natural Science Foundation of China (Grant No. 51621005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The FMBC contains both magnetic properties and good adsorption performance for Pb(II) and Cd(II).

• KMnO4 treatment increased the adsorption quantity of FBC by 7 times.

• The enhancement of FMBC for heavy metal adsorption could be ascribed to surface modification by KMnO4.

• The magnetization of FMBC can reach nearly as half as that of FBC.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Chen, T., Huang, Q. et al. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environ Sci Pollut Res 26, 8902–8913 (2019). https://doi.org/10.1007/s11356-019-04321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04321-z

Keywords

Navigation