Skip to main content
Log in

Fabrication of MoS2@TiO2 hollow‐sphere heterostructures with enhanced visible light photocatalytic reduction of U(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The MoS2@TiO2 hollow sphere heterostructures (MoS2@THS) were synthesized and used for photocatalytic reduction of U(VI) from wastewater under visible light. The optimum MoS2@THS-12 shows the highest photocatalytic reduction rate (irradiated for 80 min) with excellent recyclability and stability, which is approximately 4.1 times as much as the pure MoS2. The improved photocatalytic activity of MoS2@THS-12 is mainly due to the II-types heterojunction formed between MoS2 and THS. Meanwhile, the photogenerated electrons and superoxide radical are important active species in the photoreduction U(VI) process. The results provide an effective strategy for uranium resource utilization and pollution abatement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wei Y, Zhang L, Shen L, Hua D (2016) Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution. J Mol Liq 221:1231–1236

    Article  CAS  Google Scholar 

  2. Liu C, Hsu PC, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007

    Article  CAS  Google Scholar 

  3. Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD, Abney CW, Wojtas L, Ma S (2018) Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat Comm 9:1644

    Article  Google Scholar 

  4. Cantrell JL, Kaplan DI, Wietsma TW (1995) Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater 42:201–212

    Article  CAS  Google Scholar 

  5. Charlet L, Silvester E, Liger E (1998) N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface FeIIIOFeIIOH species, as major reductant. Chem Geol 151:85–93

    Article  CAS  Google Scholar 

  6. Noubactep C, Schöner A, Meinrath G (2006) Mechanism of uranium removal from the aqueous solution by elemental iron. J Hazard Mater 132:202–212

    Article  CAS  PubMed  Google Scholar 

  7. Salomone VN, Meichtry JM, Zampieri G, Litter MI (2015) New insights in the heterogeneous photocatalytic removal of U(VI) in aqueous solution in the presence of 2-propanol. Chem Eng J 261:27–35

    Article  CAS  Google Scholar 

  8. Salomone VN, Meichtry JM, Litter MI (2015) Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation. Chem Eng J 270:28–35

    Article  CAS  Google Scholar 

  9. Amadelli R, Maldotti A, Sostero S, Carassiti V (1991) Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. J Chem Soc, Faraday Trans 87:3267–3273

    Article  CAS  Google Scholar 

  10. Odoh SO, Pan QJ, Shamov GA, Wang F, Fayek M, Schreckenbach G (2012) Theoretical study of the reduction of uranium(VI) aquo complexes on titania particles and by alcohols. Chem-Eur J 18:7117–7127

    Article  CAS  PubMed  Google Scholar 

  11. Li Z, Wang H, Yin S, Wang P, Yan B, Huang X, Wang R, Li X, Zong H, Han C (2016) Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem Sci 7:6076–6082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim YK, Lee S, Ryu J, Park H (2015) Solar conversion of seawater uranium(VI) using TiO2 electrodes. Appl Catal B Environ 163:584–590

    Article  CAS  Google Scholar 

  13. He F, Meng AY, Cheng B, Ho WK, Yu JG (2020) Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese J Catal 41:9–20

    Article  CAS  Google Scholar 

  14. Tayyab M, Noman Azeem M, Ashraf A (2019) Synthesis and applications of nano-TiO2: a review. Environ Sci Pollut R 26:3262–3291

    Article  Google Scholar 

  15. Mamaghani AH, Haghighat F, Lee CS (2020) Role of titanium dioxide (TiO2) structural design/morphology in photocatalytic air purification. Appl Catal B Environ 269:118735

    Article  CAS  Google Scholar 

  16. Miyoshi A, Nishioka S, Maeda K (2018) Water splitting on rutile TiO2-based photocatalysts. Chem-Eur J 24:18204–18219

    Article  CAS  PubMed  Google Scholar 

  17. Zhao F, Rong Y, Wan J, Hu Z, Peng Z, Wang B (2018) MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis. Nanotechnology 29:105403

    Article  PubMed  Google Scholar 

  18. Zheng L, Han S, Liu H, Yu P, Fang X (2016) Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12:1527–1536

    Article  CAS  PubMed  Google Scholar 

  19. He S, Zhang Y, Ren J, Wang B, Zhang M (2020) Facile synthesis of TiO2@MoS2 hollow microtubes for removal of organic pollutants in water treatment. Colloid Surface A 600:124900

    Article  CAS  Google Scholar 

  20. Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y (2017) MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ Sci 11:106–114

    Article  Google Scholar 

  21. Yang Y, Wang S, Lin S, Li Y, Zhang W, Chao Y, Luo M, Xing Y, Wang K, Yang C, Zhou P, Zhang Y, Tang Z, Guo S (2018) Rational design of hierarchical TiO2/ epitaxially aligned MoS2-carbon coupled interface nanosheets core/shell architecture for ultrastable sodium-ion and lithium-sulfur batteries. Small Methods 2:1800119

    Article  Google Scholar 

  22. Zhou WJ, Yin ZY, Du YP, Huang X, Zeng ZY, Fan ZX, Liu H, Wang JY, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140–147

    Article  CAS  PubMed  Google Scholar 

  23. Feng Z, Yu Z, Song S, Zhang H (2011) Superior electrode performance of mesoporous hollow TiO2 microspheres through efficient hierarchical nanostructures. J Power Sources 196:8618–8624

    Article  Google Scholar 

  24. Zhu M, Cai Y, Liu S, Fang M, Tan X, Liu X (2019) K2Ti6O13 hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environ Pollut 248:448–455

    Article  CAS  PubMed  Google Scholar 

  25. Wu L, Wan G, Hu N, He Z, Shi S, Suo Y (2018) Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nanomaterials 8:451

    Article  PubMed Central  Google Scholar 

  26. Qu Y, Zhang D, Wang X, Qiu H, Zhang T, Zhang M, Tian G, Yue H, Feng S, Chen G (2017) Porous ZnFe2O nanospheres as anode materials for Li-ion battery with high performance. J Alloy Compd 721:697–704

    Article  CAS  Google Scholar 

  27. Beiler AM, Mccarthy BD, Johnson BA, Ott S (2020) Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating. Nat Comm 11:5819

    Article  CAS  Google Scholar 

  28. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296

    Article  CAS  Google Scholar 

  29. Yu L, Xie YL, Zhou JQ, Li Y, Yu Y, Ren ZF (2018) Robust and selective electrochemical reductionof CO2: the case of integrated 3D TiO2@MoS2 architectures and Ti-S bonding effects. J Mater Chem A 6:4706–4713

    Article  CAS  Google Scholar 

  30. Cravanzola S, Sarro M, Cesano F, Calza P, Scarano D (2018) Few-layer MoS2 nanodomains decorating TiO2 nanoparticles: a case study for the photodegradation of carbamazepine. Nanomaterials 8:207

    Article  PubMed Central  Google Scholar 

  31. Zhang Y, Zhu M, Zhang S, Cai Y, Wang X (2020) Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl Catal B Environ 279:119390

    Article  CAS  Google Scholar 

  32. Gong J, Xie Z, Wang B, Li Z, Le Z (2020) Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U(VI). J Environ Chem Eng 9:104638

    Article  Google Scholar 

  33. Zhang Z, Liu C, Dong Z, Dai Y, Xiong G, Liu Y (2020) Synthesis of flower-like MoS2/g-C3N4 nanosheet heterojunctions with enhanced photocatalytic reduction activity of uranium(VI). Appl Surf Sci 520:146352

    Article  CAS  Google Scholar 

  34. Chen K, Chen CL, Ren XM, Alsaedi A, Hayat T (2019) Interaction mechanism between different facet TiO2 and U(VI): experimental and density-functional theory investigation. Chem Eng J 359:944–954

    Article  CAS  Google Scholar 

  35. Jiang XH, Xing QJ, Luo XB, Li F, Zou JP, Liu SS, Li X, Wang XK (2018) Simultaneous photoreduction of uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B Environ 228:29–38

    Article  CAS  Google Scholar 

  36. Wang Z, Liu H, Lei Z, Huang L, Wu T, Liu S, Ye G, Lu Y, Wang X (2020) Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem Eng J 402:126256

    Article  CAS  Google Scholar 

  37. Liu X, Du P, Pan W, Dang C, Qian T, Liu H, Liu W, Zhao D (2019) Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl Catal B Environ 231:11–22

    Article  Google Scholar 

  38. Dong ZM, Zhang ZB, Li ZF, Feng Y, Dong WJ, Wang T, Cheng ZP, Wang YQ, Dai Y, Cao XH, Liu YH, Liu YH (2021) 3D structure aerogels constructed by reduced graphene oxide and hollow TiO2 spheres for efficient visible-light-driven photoreduction of U(VI) in air-equilibrated wastewater. Environ Sci Nano 8:2372–2385

    Article  CAS  Google Scholar 

  39. Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Ac 140:621–643

    Article  CAS  Google Scholar 

  40. Cheng L, Zhang S, Wang Y, Ding G, Jiao Z (2016) Ternary P25-graphene-Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes. Mater Res Bull 73:77–83

    Article  CAS  Google Scholar 

  41. Li P, Wu H, Liang J, Yin Z, Pan D, Fan Q, Xu D, Wu W (2017) Sorption of Eu(III) at feldspar/water interface: effects of pH, organic matter, counter ions, and temperature. Radiochim Acta 105:1049–1058

    Article  CAS  Google Scholar 

  42. Wang JJ, He BH, Wei XY, Li P, Liang JJ, Qiang SR, Fan QH, Wu WS (2019) Sorption of uranyl ions on TiO2: effects of pH, contact time, ionic strength, temperature and HA. J Environ Sci 75:115–123

  43. Wang Z, Zhang J, Lv J, Dai K, Liang C (2017) Plasmonic Ag2MoO4/AgBr/Ag composite: excellent photocatalytic performance and possible photocatalytic mechanism. Appl Surf Sci 396:791–798

    Article  CAS  Google Scholar 

  44. Wang Z, Wang K, Li Y, Jiang L, Zhang G (2019) Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling. Appl Surf Sci 498:143850

    Article  CAS  Google Scholar 

  45. Xu D, Shi W, Song C, Chen M, Yang S, Fan W, Chen B (2016) In-situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic Ag/AgCl/NaTaO3 nanocubes photocatalysts. Appl Catal B Environ 191:228–234

    Article  CAS  Google Scholar 

  46. Su F, Li PP, Huang JS, Gu MJ, Liu ZY, Xu YH (2021) Photocatalytic degradation of organic dye and tetracycline by ternary Ag2O/AgBr–CeO2 photocatalyst under visible-light irradiation. Sci Rep 11:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu F, Meng K, Cheng B, Wang S, Yu J (2020) Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr 3 hybrids for CO2 photoreduction. Nat Comm 11:4613

    Article  CAS  Google Scholar 

  48. Liu H, Zhai H, Hu C, Yang J, Liu Z (2017) Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability. Nanoscale Res Lett 12:466

    Article  PubMed  PubMed Central  Google Scholar 

  49. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, Gu Q, Li Y, Yan C, Tay BK, Xue C, Hu X, Pantelides ST, Zhou W, Liu Z (2016) MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv Energy Mater 6:1600464

    Article  Google Scholar 

  50. Liu X, Du P, Pan W (2018) Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl Catal B Environ 231:11–12

    Article  CAS  Google Scholar 

  51. Vomiero MA (2019) Advanced electrocatalysts for hydrogen evolution reaction based on core-shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Appl Ener Mat 2:2053–2062

    Article  Google Scholar 

  52. Shen XF, Zhang Y, Shi Z, Shan SD, Liu JS, Zhang LS (2021) Construction of C3N4/CdS nanojunctions on carbon fiber cloth as a filter-membrane-shaped photocatalyst for degrading flowing wastewater. J Alloy Compds 851:156743

    Article  CAS  Google Scholar 

  53. Pan JQ, Li HL, Li S, Ou W, Liu YY, Wang JJ, Song CS, Zheng YY, Li CR (2020) The enhanced photocatalytic hydrogen production of nickel-cobaltbimetals sulfide synergistic modified CdS nanorods with active facets. Renew Energy 156:469–477

    Article  CAS  Google Scholar 

  54. Wang R, Shi M, Xu F, Qiu Y, Zhang Y (2020) Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat Comm 11:4465

    Article  CAS  Google Scholar 

  55. Dong ZM, Zhang ZB, Zhou RZ, Dong YY, Dai Y, Cao XH, Wang YQ, Liu YH (2020) Construction of oxidized millimeter-sized hierarchically porous carbon sphere for U(VI) adsorption. Chem Eng J 386:123944

Download references

Acknowledgements

The authors would like to thank State Administration of Science. Technology and Industry for National Defense, China for funding this work under the [2014]1587 Grant, and the School of Geosciences, East China University of Technology for providing geology and mechanics data in the Tamusu pre-selected area for geological disposal of HLW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengwei Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G., Liu, X. & Liu, P. Fabrication of MoS2@TiO2 hollow‐sphere heterostructures with enhanced visible light photocatalytic reduction of U(VI). J Radioanal Nucl Chem 331, 263–273 (2022). https://doi.org/10.1007/s10967-021-08091-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08091-2

Keywords

Navigation