Skip to main content
Log in

Applicability of the 210Pb dating method to quartz-sandstone stalactites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper describes the first application of the 210Pb dating method to quartz-sandstone stalactites, which until now had only been used to determine the growth rates of recent carbonate speleothems. Five stalactites were sampled from two quartz-sandstone caves located in Serra de Itaqueri, southeastern Brazil, and they all exhibited a quantifiable measure of the 210Pb activity concentration in their sectional layers. Two samples showed a desirable exponential decrease of the excess 210Pb activity along with the vertical distance, yielding growth rates of 0.39±0.08 mm/yr and 0.18±0.01 mm/yr, respectively, for stalactites 25-mm long (Paredão Cave) and 17-mm long (Fazendão cave).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Vieira et al. [49] and Montano et al. [50]

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jia G (2018) Simultaneous determination of 210Po and 210Pb in solid samples: A new method for 210Pb determination. Appl Radiat Isot 137:12–17

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg ED (1963) In: IAEA (International Atomic Energy Agency) (ed) Radioactive dating, Proceedings of a Symposium. IAEA, Vienna

  3. Baskaran M, Shaw GE (2001) Residence time of arctic haze aerosols using the concentrations and activity ratios of 210Po, 210Pb and 7Be. J Aerosol Sci 32:443–452

    Article  CAS  Google Scholar 

  4. Garcia-Orellana J, Sanchez-Cabeza JA, Masqué P et al (2006) Atmospheric fluxes of 210Pb to the western Mediterranean Sea and the Saharan dust influence. J Geophys Res Atmos 111:1–9

    Article  Google Scholar 

  5. Baskaran M, Swarzenski PW (2007) Seasonal variations on the residence times and partitioning of short-lived radionuclides (234Th, 7Be and 210Pb) and depositional fluxes of 7Be and 210Pb in Tampa Bay. Florida Mar Chem 104:27–42

    Article  CAS  Google Scholar 

  6. Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  CAS  Google Scholar 

  7. Appleby PG, Haworth EY, Michel H et al (2003) The transport and mass balance of fallout radionuclides in Brotherswater, Cumbria (UK). J Paleolimnol 29:459–473

    Article  Google Scholar 

  8. Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: A review. Holocene 18:83–93

    Article  Google Scholar 

  9. Andrews AH, Stone RP, Lundstrom CC, Devogelaere AP (2009) Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Mar Ecol Prog Ser 397:173–185

    Article  CAS  Google Scholar 

  10. Baskaran M (2012). In: Baskaran M (ed) Handbook of environmental isotope geochemistry, 1st edn. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  11. Villa-Alfageme M, Mas JL, Hurtado-Bermudez S, Masqué P (2016) Rapid determination of 210Pb and 210Po in water and application to marine samples. Talanta 160:28–35

    Article  CAS  PubMed  Google Scholar 

  12. Appleby PG, Oldfield F (1992). In: Ivanovich M, Harmon RS (eds) Uranium-series disequilibrium: applications to earth, marine, and environmental sciences, 2nd edn. Oxford Sciences Publications, Oxford

    Google Scholar 

  13. Baskaran M, Asbill S, Santschi P et al (1996) Pu, 137Cs and excess 210Pb in Russian Arctic sediments. Earth Planet Sci Lett 140:243–257

    Article  CAS  Google Scholar 

  14. Santschi PH, Presley BJ, Wade TL et al (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79

    Article  CAS  PubMed  Google Scholar 

  15. Sabaris TPP, Bonotto DM (2011) Sedimentation rates in Atibaia River basin, São Paulo State, Brazil, using 210Pb as geochronometer. Appl Radiat Isot 69:275–288

    Article  CAS  PubMed  Google Scholar 

  16. Nery JRC, Bonotto DM (2011) 210Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá. Brazil J Environ Radioact 102:348–362

    Article  CAS  PubMed  Google Scholar 

  17. Appleby PG (2000) Radiometrie dating of sediment records in European mountain lakes. J Limnol 59:1–14

    Article  Google Scholar 

  18. Swarzenski PW (2014). In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods, 1st edn. Springer, Dordrecht

    Google Scholar 

  19. Bonotto DM, Vergotti M (2015) 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin. Brazil Appl Radiat Isot 99:5–19

    Article  CAS  PubMed  Google Scholar 

  20. Baskaran M, Iliffe TM (1993) Age determination of recent cave deposits using excess 210Pb - A new technique. Geophys Res Lett 20:603–606

    Article  CAS  Google Scholar 

  21. Tanahara A, Taira H, Yamakawa K, Tsuha A (1998) Application of excess 210Pb dating method to stalactites. Geochem J 32:183–187

    Article  CAS  Google Scholar 

  22. Paulsen DE, Li H, Ku T (2003) Climate variability in central China over the last 1270 years revealed by high-resolution stalagmite records. Quat Sci Rev 22:691–701

    Article  Google Scholar 

  23. Woo KS, Hong GH, Choi DW et al (2005) A reconnaissance on the use of the speleothems in Korean limestone caves to retrospective study on the regional climate change for the recent and geologic past. Geosci J 9:243–247

    Article  CAS  Google Scholar 

  24. Condomines M, Rihs S (2006) First 226Ra-210Pb dating of a young speleothem. Earth Planet Sci Lett 250:4–10

    Article  CAS  Google Scholar 

  25. Yang X, Zhang P, Chen F et al (2007) Modern stalagmite oxygen isotopic composition and its implications of climatic change from a high-elevation cave in the eastern Qinghai-Tibet Plateau over the past 50 years. Chinese Sci Bull 52:1238–1247

    Article  CAS  Google Scholar 

  26. Jo K, nam, Woo KS, Hong GH, et al (2010) Rainfall and hydrological controls on speleothem geochemistry during climatic events (droughts and typhoons): An example from Seopdong Cave, Republic of Korea. Earth Planet Sci Lett 295:441–450

    Article  CAS  Google Scholar 

  27. Bonotto DM, Karmann I, Baskaran MM (2012) Growth rates in modern speleothems from Santana Cave, Brazil, by the 210Pb-method. Radiat Meas 47:168–177

    Article  CAS  Google Scholar 

  28. Tang W, Lan G, Yang H et al (2020) Variations and influence factors of 210Pb-specific radioactivity in modern calcite depositions in a subtropical cave South China. Appl Geochem 113:104468

    Article  CAS  Google Scholar 

  29. Fairchild IJ, Frisia S, Borsato A, Tooth AF (2006). In: Nash DJ, McLaren S (eds) Geochemical sediments and landscapes. Wiley, New York

    Google Scholar 

  30. Breisch RL (1968) Natural radiation in caves. The Southwest Caver 7:81–110

    Google Scholar 

  31. Hakl J, Hunyadi I, Csige I (1997) Caves - International experiences on radon. Radiat Meas 28:675–684

    Article  CAS  Google Scholar 

  32. Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  CAS  Google Scholar 

  33. Wray RAL (1997) A global review of solutional weathering forms on quartz sandstones. Earth-Science Rev 42:137–160

    Article  CAS  Google Scholar 

  34. Wray RAL (1997) Quartzite dissolution: Karst or pseudokarst? Cave Karst Sci 24:81–86

    Google Scholar 

  35. Auler AS, Sauro F (2019) Quartzite and quartz sandstone caves of South America, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  36. Aubrecht R, Brewer-Carías C, Šmída B et al (2008) Anatomy of biologically mediated opal speleothems in the World’s largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau. Venezuela Sediment Geol 203:181–195

    Article  Google Scholar 

  37. Hill CA, Forti P (1997) Cave minerals of the world. National Speleological Society, Huntsville

    Google Scholar 

  38. Wray RAL, Sauro F (2017) An updated global review of solutional weathering processes and forms in quartz sandstones and quartzites. Earth-Science Rev 171:520–557

    Article  CAS  Google Scholar 

  39. McDonald L, Officer K, Jull T et al (1990) Investigating 14C AMS: dating prehistoric rock art in the Sydney Sandstone Basin. Australia Rock Art Res 7:83–92

    Google Scholar 

  40. Watchman A (1994) Radiocarbon dating fatty acids in Holocene siliceous rock surface accretions. Aust J Earth Sci 41:179–180

    Article  Google Scholar 

  41. Lundberg J, Brewer-Carias C, McFarlane DA (2010) Preliminary results from U-Th dating of glacial-interglacial deposition cycles in a silica speleothem from Venezuela. Quat Res 74:113–120

    Article  CAS  Google Scholar 

  42. Sauro F, Lunberg J, De Waele J, et al (2013) Speleogenesis and speleothems of the Guacamaya Cave, Auyan Tepui, Venezuela. In: Filippi M, Bosak P (eds) Proc XVI Int Cong Speleology, v 3. Brno

  43. Lundberg J, Brewer-Carías C, McFarlane DA (2018) On biospeleothems from a Venezuelan tepui cave: U-Th dating, growth rates, and morphology. Int J Speleol 47:361–378

    Article  Google Scholar 

  44. Perrette Y, Jaillet S (2010) Spatial distribution of soda straws growth rates of the Coufin Cave (Vercors, France). Int J Speleol 39:61–70

    Article  Google Scholar 

  45. Hardt R, Rodet J, Pinto SAF, Willems L (2009) Brazilian Examples of Sandstone Karst: Chapada Dos Guimarães (MtT) and Serra De Itaqueri (SP). Espeleo-Tema 20:7–23 (in Portuguese)

    Google Scholar 

  46. Pontes HS, Fernandes LA, Mello MS et al (2020) Speleothems in quartz-sandstone caves of Ponta Grossa municipality, Campos Gerais region, Paraná state, southern Brazil. Int J Speleol 49:119–136

    Article  Google Scholar 

  47. Melo MS, Guimarães GB, Chinelatto AL et al (2015) Kaolinite, illite and quartz dissolution in the karstification of Paleozoic sandstones of the Furnas Formation, Paraná Basin, Southern Brazil. J South Am Earth Sci 63:20–35

    Article  Google Scholar 

  48. Bonotto DM, Caprioglio L, Bueno TO, Lazarindo JR (2009) Dissolved 210Po and 210Pb in Guarani aquifer groundwater. Brazil Radiat Meas 44:311–324

    Article  CAS  Google Scholar 

  49. Vieira LB, Montano LFM, Stumpft CF, et al (2013) Speleological potential of Serra de Itaqueri (SP): systematic works of exploration, mapping, collection and analysis of materials and data. In: SBE (Brazilian Society of Speleology) (ed) Proc. XXXII Brazilian Congress of Speleology. SBE, Barreiras (in Portuguese)

  50. Montano LFM, Cortes JPS, Vieira LB et al (2014) Geospeleological overview of the Serra de Itaqueri sandstone caves. Espeleo-Tema 25:11–24 (in Portuguese)

    Google Scholar 

  51. Penteado MM (1976) Geomorphology of the Midwest Sector of the Paulista Peripheral Depression. PhD Thesis, UNESP-São Paulo State University, Rio Claro (in Portuguese)

  52. Almeida FFM (2018) Geological foundations of the relief of the State of São Paulo. Rev Inst Geol 39:9–75 (in Portuguese)

    Google Scholar 

  53. Ladeira FSB, Santos M (2005) The use of paleosols and soil alteration profile for the identification and analysis of regional geomorphic surfaces: the case of Serra de Itaqueri (SP). Rev Bras Geomorfol 6:2–20 (in Portuguese)

    Google Scholar 

  54. Monteiro RC, Ribeiro LFB (2001) Speleogenesis of sandstone caves: some considerations applied to the Serra de Itaqueri Speleological Province, São Paulo State, Brazil. In: SBE (Brazilian Society of Speleology) (ed) Proc XIII International Congress of Speleology. SBE, Brasilia (in Portuguese)

  55. Correa EA, Sanjos Pintos SAF (2012) Evaluation of the natural erosion potential of the hydrographic Monjolo Grande Stream Basin (Ipeúna-SP). Rev Geonorte 2:1356–1367 (in Portuguese)

    Google Scholar 

  56. Milani EJ, Ramos VA (1998) Paleozoic orogenies in southwestern Gondwana and the subsidence cycles of the Paraná Basin. Rev Bras Geociencias 28:473–484 (in Portuguese)

    Article  Google Scholar 

  57. Milani EJ, Melo JHG, Souza PA et al (2007) Paraná Basin Bol Geociencias Petrobras 15:265–287 (in Portuguese)

    Google Scholar 

  58. Schneider RL, Mühlmann H, Tomassi E, et al (1974) Stratigraphic review of the Paraná Basin. In: SBG (Brazilian Society of Geology) (ed) Proc. XXVIII Brazilian Congress of Geology. SBG, Porto Alegre (in Portuguese)

  59. Riccomini C (1997) Considerations on the stratigraphic position and deforming tectonism of the Itaqueri Formation in the central-eastern portion of São Paulo State. Rev do Inst Geológico 18:41–48 (in Portuguese)

    Article  Google Scholar 

  60. Ribeiro LFB, Souza Cruz FR, Ribeiro MCS, Godoy DF (2005) Origin and structural and stratigraphic control of caves, “tocas” and rock shelters of Ipeúna and Itirapina (SP). In: SBE (Brazilian Society of Speleology) (ed) Proc XXVIII Brazilian Congress of Speleology. SBE, Campinas, (in Portuguese)

  61. Veríssimo CUV, Spoladore A (1994) Fazendão cave (SP-170): Geological and genetic considerations. Espeleo-Tema 17:1–7 (in Portuguese)

    Google Scholar 

  62. Ribeiro LFB, Monteiro RC, Roldan AA, Reato MP (1997) Structural characterization and speleogenesis of Ipeúna and Itirapina Caves – São Paulo State. In: SBE (Brazilian Society of Speleology) (ed) Proc V Southeastern Section Meeting of Geology. SBE, Rio de Janeiro (in Portuguese)

  63. Karraker DG, Ghiorso A, Templeton DH (1951) Alpha-decay energies of polonium isotopes. Phys Rev 83:390–393

    Article  CAS  Google Scholar 

  64. Flynn WW (1968) The determination of low levels of polonium-210 in environmental materials. Anal Chim Acta 43:221–227

    Article  CAS  PubMed  Google Scholar 

  65. Bonotto DM, Lima JLN (2006) 210Pb-derived chronology in sediment cores evidencing the anthropogenic occupation history at Corumbataí River basin. Brazil Environ Geol 50:595–611

    Article  CAS  Google Scholar 

  66. Bonotto DM (2004) Doses from 222Rn, 226Ra, and 228Ra in groundwater from Guarani aquifer. South America J Environ Radioact 76:319–335

    Article  CAS  PubMed  Google Scholar 

  67. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:52–79

    Article  Google Scholar 

  68. Turner LJ, Delorme LD (1996) Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ Geol 28(2):78–87

    Article  CAS  Google Scholar 

  69. Karmann I (2016) Karst and Caves in Brasil: distribution, current dynamics and sedimentary records, brief history and critical analysis of research carried out under the scope of IG-USP. Post PhD Thesis, USP-São Paulo University, São Paulo (in Portuguese)

Download references

Acknowledgements

APF thanks CNPq (National Council for Scientific and Technological Development) in Brazil for the Geology´s Bachelor scientific research scholarship. Two anonymous reviewers are greatly thanked for constructive comments that improved the readability of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Bonotto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figols, A.P., Bonotto, D.M. Applicability of the 210Pb dating method to quartz-sandstone stalactites. J Radioanal Nucl Chem 331, 89–98 (2022). https://doi.org/10.1007/s10967-021-08086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08086-z

Keywords

Navigation