Skip to main content
Log in

Neuro-fuzzy estimation of important coccoliths on abundances of foraminiferal species and fragments abundances

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The study's major goal was to identify the most significant coccoliths based on foraminiferal species and fragment abundances, oxygen isotope ratios, and calculated temperatures. The degree of preservation of coccoliths and foraminifera indicates that the carbonate lysocline is between 3500 and 4000 m. The distribution of forty-four coccolithophore species in one hundred deep-sea core-tops from the southwest Indian Ocean is used. Gephyrocapsa oceanica has the strongest relationship with the foraminiferal fragments and carbonate. Calcidiscus leptoporus has the strongest influence on oxygen isotope and derived temperature. The findings could be useful in advancing paleoceanographic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin X, Liu C, Zhang H (2018) Coccolith morphological and assemblage responses to dissolution in the recent sediments of the East China Sea. Mar Micropaleontol 152:101709

    Article  Google Scholar 

  2. López-Otálvaro GE, Flores JA, Sierro FJ, Lalicata J, Lea DW, Mix A (2019) Deciphering latitudinal shifts in coccolith accumulation in the eastern tropical Pacific Ocean through the Pleistocene. Mar Micropaleontol 152:101739

    Article  Google Scholar 

  3. Jakob I, Weggenmann F, Posten C (2018) Cultivation of Emiliania huxleyi for coccolith production. Algal Res 31:47–59

    Article  Google Scholar 

  4. Jin X, Liu C (2017) Ecological and taphonomical influences on coccoliths in surface sediments in the shelf of the Yellow and East China Seas. Cont Shelf Res 140:27–36

    Article  Google Scholar 

  5. Balch WM, Bowler BC, Drapeau DT, Lubelczy LC, Lyczkowski E, Mitchell C, Wyeth A (2019) Coccolithophore distributions of the north and South Atlantic ocean. Deep Sea Res Part I: Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2019.06.012

    Article  Google Scholar 

  6. Jin P, Liu N, Gao K (2019) Physiological responses of a coccolithophore to multiple environmental drivers. Mar Pollut Bull 146:225–235

    Article  CAS  Google Scholar 

  7. Priyadarshani WNC, Ran L, Wiesner MG, Chen J, Ling Z, Yu S, Ye Y (2019) Seasonal and interannual variability of coccolithophore flux in the northern South China Sea. Deep Sea Res Part I: Oceanogr Res Pap 145:13–30

    Article  Google Scholar 

  8. Cavaleiro C, Voelker AH, Stoll H, Baumann KH, Kulhanek DK, Naafs BD, Kucera M (2018) Insolation forcing of coccolithophore productivity in the North Atlantic during the Middle Pleistocene. Quatern Sci Rev 191:318–336

    Article  Google Scholar 

  9. Keuter S, Young JR, Frada MJ (2019) Life cycle association of the coccolithophore Syracosphaera gaarderae comb. nov. (ex Alveosphaera bimurata): taxonomy, ecology and evolutionary implications. Mar Micropaleontol 148:58–64

    Article  Google Scholar 

  10. Krumhardt KM, Lovenduski NS, Iglesias-Rodriguez MD, Kleypas JA (2017) Coccolithophore growth and calcification in a changing ocean. Prog Oceanogr 159:276–295

    Article  Google Scholar 

  11. Furukawa M, Sato T, Suzuki Y, Casareto BE, Hirabayashi S (2018) Numerical modelling of physiological and ecological impacts of ocean acidification on coccolithophores. J Mar Syst 182:12–30

    Article  Google Scholar 

  12. Patil SM, Mohan R, Shetye SS, Gazi S, Baumann KH, Jafar S (2017) Biogeographic distribution of extant coccolithophores in the Indian sector of the Southern Ocean. Mar Micropaleontol 137:16–30

    Article  Google Scholar 

  13. Li Y, Müller MN, Paull B, Nesterenko PN (2016) Precise and fast determination of inorganic magnesium in coccolithophore calcite. Chem Geol 437:1–6

    Article  CAS  Google Scholar 

  14. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  15. Petković D, Issa M, Pavlović ND, Pavlović NT, Zentner L (2012) Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Syst Appl 39(10):9477–9482

    Article  Google Scholar 

  16. Petković D, Ćojbašić Ž (2012) Adaptive neuro-fuzzy estimation of autonomic nervous system parameters effect on heart rate variability. Neural Comput Appl 21(8):2065–2070

    Article  Google Scholar 

  17. Kurnaz S, Kaynak O, Konakoğlu E. (2007). Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. In: International symposium on neural networks (pp. 14–21). Springer, Berlin

  18. Petković D, Issa M, Pavlović ND, Zentner L, Ćojbašić Ž (2012) Adaptive neuro fuzzy controller for adaptive compliant robotic gripper. Expert Syst Appl 39(18):13295–13304

    Article  Google Scholar 

  19. Fincham MJ, Winter A (1989) Paleoceanographic interpretations of coccoliths and oxygen-isotopes from the sediment surface of the southwest Indian Ocean. Mar Micropaleontol 13(4):325–351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Milovančević.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanikić, P., Milovančević, M. Neuro-fuzzy estimation of important coccoliths on abundances of foraminiferal species and fragments abundances. J Radioanal Nucl Chem 330, 1037–1043 (2021). https://doi.org/10.1007/s10967-021-08044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08044-9

Keywords

Navigation