Skip to main content
Log in

89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Death receptor 5 (DR5) is overexpressed in many tumors. Combination of the anti-DR5 antibody with radionuclides such as lutetium-177 (177Lu) could enhance apoptosis and decrease the possibility of drug-induced resistance. In this study, a humanized anti-DR5 monoclonal antibody CTB006 was labeled with zirconium-89 (89Zr) and 177Lu to improve its efficiency for diagnosis and radiotherapy, respectively. The radiolabeled antibodies showed high tumor uptake in colon205 xenografts according to the results of micro-PET imaging and biodistribution. The 177Lu-DOTA-CTB006 could inhibit tumor growth significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397. https://doi.org/10.1093/emboj/16.17.5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L (2016) Onto better TRAILs for cancer treatment. Cell Death Differ 23(5):733–747. https://doi.org/10.1038/cdd.2015.174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ivanov VN, Bhoumik A, Ronai Z (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22(20):3152–3161. https://doi.org/10.1038/sj.onc.1206456

    Article  CAS  PubMed  Google Scholar 

  4. Wong SHM, Kong WY, Fang CM, Loh HS, Chuah LH, Abdullah S, Ngai SC (2019) The TRAIL to cancer therapy: Hindrances and potential solutions. Crit Rev Oncol Hematol 143:81–94. https://doi.org/10.1016/j.critrevonc.2019.08.008

    Article  PubMed  Google Scholar 

  5. Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ (2007) Targeting death-inducing receptors in cancer therapy. Oncogene 26(25):3745–3757. https://doi.org/10.1038/sj.onc.1210374

    Article  CAS  PubMed  Google Scholar 

  6. Brunker P, Wartha K, Friess T, Grau-Richards S, Waldhauer I, Koller CF, Weiser B, Majety M, Runza V, Niu H, Packman K, Feng N, Daouti S, Hosse RJ, Mossner E, Weber TG, Herting F, Scheuer W, Sade H, Shao C, Liu B, Wang P, Xu G, Vega-Harring S, Klein C, Bosslet K, Umana P (2016) RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol Cancer Ther 15(5):946–957. https://doi.org/10.1158/1535-7163.MCT-15-0647

    Article  CAS  PubMed  Google Scholar 

  7. Setroikromo R, Zhang B, Reis CR, Mistry RH, Quax WJ (2020) Death receptor 5 displayed on extracellular vesicles decreases TRAIL sensitivity of colon cancer cells. Front Cell Dev Biol 8:318. https://doi.org/10.3389/fcell.2020.00318

    Article  PubMed  PubMed Central  Google Scholar 

  8. El-Gazzar A, Perco P, Eckelhart E, Anees M, Sexl V, Mayer B, Liu Y, Mikulits W, Horvat R, Pangerl T, Zheng D, Krainer M (2010) Natural immunity enhances the activity of a DR5 agonistic antibody and carboplatin in the treatment of ovarian cancer. Mol Cancer Ther 9(4):1007–1018. https://doi.org/10.1158/1535-7163.MCT-09-0933

    Article  CAS  PubMed  Google Scholar 

  9. Herbst RS, Kurzrock R, Hong DS, Valdivieso M, Hsu CP, Goyal L, Juan G, Hwang YC, Wong S, Hill JS, Friberg G, LoRusso PM (2010) A first-in-human study of conatumumab in adult patients with advanced solid tumors. Clin Cancer Res 16(23):5883–5891. https://doi.org/10.1158/1078-0432.CCR-10-0631

    Article  CAS  PubMed  Google Scholar 

  10. Kindler HL, Richards DA, Garbo LE, Garon EB, Stephenson JJ Jr, Rocha-Lima CM, Safran H, Chan D, Kocs DM, Galimi F, McGreivy J, Bray SL, Hei Y, Feigal EG, Loh E, Fuchs CS (2012) A randomized, placebo-controlled phase 2 study of ganitumab (AMG 479) or conatumumab (AMG 655) in combination with gemcitabine in patients with metastatic pancreatic cancer. Ann Oncol 23(11):2834–2842. https://doi.org/10.1093/annonc/mds142

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, Meng Y, Sheng X, Guan Y, Zhang F, Han Z, Kang Y, Tai G, Zhou Y, Cheng H (2017) Tunicamycin enhances human colon cancer cells to TRAIL-induced apoptosis by JNK-CHOP-mediated DR5 upregulation and the inhibition of the EGFR pathway. Anticancer Drugs 28(1):66–74. https://doi.org/10.1097/cad.0000000000000431

    Article  CAS  PubMed  Google Scholar 

  12. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23(37):6261–6271. https://doi.org/10.1038/sj.onc.1207830

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Zheng C, Zhu W, Xiong P, Zhou D, Huang C, Zheng D (2019) A novel anti-DR5 antibody-drug conjugate possesses a high-potential therapeutic efficacy for leukemia and solid tumors. Theranostics 9(18):5412–5423. https://doi.org/10.7150/thno.33598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Geelen CM, Pennarun B, Le PT, de Vries EG, de Jong S (2011) Modulation of TRAIL resistance in colon carcinoma cells: different contributions of DR4 and DR5. BMC Cancer 11:39. https://doi.org/10.1186/1471-2407-11-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shlyakhtina Y, Pavet V, Gronemeyer H (2017) Dual role of DR5 in death and survival signaling leads to TRAIL resistance in cancer cells. Cell Death Dis 8(8):e3025. https://doi.org/10.1038/cddis.2017.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM (2007) (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48(8):1357–1368. https://doi.org/10.2967/jnumed.106.037937

    Article  CAS  PubMed  Google Scholar 

  17. Govindan SV, Stein R, Qu Z, Chen S, Andrews P, Ma H, Hansen HJ, Griffiths GL, Horak ID, Goldenberg DM (2004) Preclinical therapy of breast cancer with a radioiodinated humanized anti-EGP-1 monoclonal antibody: advantage of a residualizing iodine radiolabel. Breast Cancer Res Treat 84(2):173–182. https://doi.org/10.1023/B:BREA.0000018417.02580.ef

    Article  CAS  PubMed  Google Scholar 

  18. Forrer F, Chen J, Fani M, Powell P, Lohri A, Muller-Brand J, Moldenhauer G, Maecke HR (2009) In vitro characterization of (177)Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study. Eur J Nucl Med Mol Imaging 36(9):1443–1452. https://doi.org/10.1007/s00259-009-1120-2

    Article  CAS  PubMed  Google Scholar 

  19. Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, Xing JL, Bian HJ, Jiang JL, Wang XH, Shang P, Qian AR, Zhang SH, Li L, Li Y, Feng Q, Yu XL, Feng Y, Yang XM, Tian R, Wu ZB, Leng N, Mo TS, Kuang AR, Tan TZ, Li YC, Liang DR, Lu WS, Miao J, Xu GH, Zhang ZH, Nan KJ, Han J, Liu QG, Zhang HX, Zhu P (2006) Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys 65(2):435–444. https://doi.org/10.1016/j.ijrobp.2005.12.034

    Article  CAS  PubMed  Google Scholar 

  20. Andrade-Campos MM, Montes-Limon AE, Soro-Alcubierre G, Grasa JM, Lopez-Gomez L, Baringo T, Giraldo P (2014) Long-term efficacy of (90)Y ibritumomab tiuxetan therapy in follicular non-Hodgkin lymphoma and health-related quality of life. Ann Hematol 93(12):1985–1992. https://doi.org/10.1007/s00277-014-2145-6

    Article  CAS  PubMed  Google Scholar 

  21. Ferro-Flores G, Ocampo-Garcia BE, Santos-Cuevas CL, de Maria Ramirez F, Azorin-Vega EP, Melendez-Alafort L (2015) Theranostic Radiopharmaceuticals Based on Gold Nanoparticles Labeled with (177)Lu and Conjugated to Peptides. Curr Radiopharm 8(2):150–159. https://doi.org/10.2174/1874471008666150313115423

    Article  CAS  PubMed  Google Scholar 

  22. Vilchis-Juarez A, Ferro-Flores G, Santos-Cuevas C, Morales-Avila E, Ocampo-Garcia B, Diaz-Nieto L, Luna-Gutierrez M, Jimenez-Mancilla N, Pedraza-Lopez M, Gomez-Olivan L (2014) Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice. J Biomed Nanotechnol 10(3):393–404. https://doi.org/10.1166/jbn.2014.1721

    Article  CAS  PubMed  Google Scholar 

  23. Razumienko EJ, Chen JC, Cai Z, Chan C, Reilly RM (2016) Dual-receptor-targeted radioimmunotherapy of human breast cancer xenografts in athymic mice coexpressing HER2 and EGFR using 177Lu- or 111In-labeled bispecific radioimmunoconjugates. J Nucl Med 57(3):444–452. https://doi.org/10.2967/jnumed.115.162339

    Article  CAS  PubMed  Google Scholar 

  24. Batra JS, Niaz MJ, Whang YE, Sheikh A, Thomas C, Christos P, Vallabhajosula S, Jhanwar YS, Molina AM, Nanus DM, Osborne JR, Bander NH, Tagawa ST (2020) Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((177)Lu-J591) for metastatic castration-resistant prostate cancer. Urol Oncol 38 (11):848 e849–848 e816. https://doi.org/10.1016/j.urolonc.2020.05.028

  25. Yeh MC, Tse BWC, Fletcher NL, Houston ZH, Lund M, Volpert M, Stewart C, Sokolowski KA, Jeet V, Thurecht KJ, Campbell DH, Walsh BJ, Nelson CC, Russell PJ (2020) Targeted beta therapy of prostate cancer with (177)Lu-labelled Miltuximab(R) antibody against glypican-1 (GPC-1). EJNMMI Res 10(1):46. https://doi.org/10.1186/s13550-020-00637-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeglis BM, Lewis JS (2015) The bioconjugation and radiosynthesis of 89Zr-DFO-labeled antibodies. J Vis Exp (96). https://doi.org/10.3791/52521

  27. Griessinger CM, Olafsen T, Mascioni A, Jiang ZK, Zamilpa C, Jia F, Torgov M, Romero JM, Marchioni F, Satpayev D, Lee C, Zhang G, Nayak TK, Pincha M, Amann M, Mohan PLB, Richard M, Nicolini VG, Sam J, Claus C, Ferrara C, Brunker P, Bacac M, Umana P, Ruttinger D, Wilson IA, Gudas J, Klein C, Tessier JJL (2020) The PET-tracer (89)Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment. Cancer Res 80(13):2903–2913. https://doi.org/10.1158/0008-5472.CAN-19-3269

    Article  CAS  PubMed  Google Scholar 

  28. Burvenich IJ, Lee FT, Guo N, Gan HK, Rigopoulos A, Parslow AC, O’Keefe GJ, Gong SJ, Tochon-Danguy H, Rudd SE, Donnelly PS, Kotsuma M, Ohtsuka T, Senaldi G, Scott AM (2016) In vitro and in vivo evaluation of (89)Zr-DS-8273a as a theranostic for anti-death receptor 5 therapy. Theranostics 6(12):2225–2234. https://doi.org/10.7150/thno.16260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Zhu H, Li Y, Ding J, Wang F, Ding L, Wang X, Zhao J, Zhang Y, Yao Y, Zhou T, Li N, Wu A, Yang Z (2021) First-in-human DR5 PET reveals insufficient DR5 expression in patients with gastrointestinal cancer. J Immunother Cancer 9(7). https://doi.org/10.1136/jitc-2021-002926

  30. Dadachova E, Chappell LL, Brechbiel MW (1999) Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates. Nucl Med Biol 26(8):977–982. https://doi.org/10.1016/s0969-8051(99)00054-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded from the Key R&D Project of Sichuan Science and Technology Program (grant no. 2020YFS0030 and 2019ZDZX0012), National Natural Science Foundation of China (grant no. 21906155), and the Nuclear Energy Development Project of State Administration of Science, Technology and Industry for National Defense (Grant No. 20201192-1). Special thanks to Prof. Tong Zhou and Ms. Zhe Li from Sinotau Pharmaceutical Technology Co., Ltd for providing antibody and performing the histological analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangang Zhuo or Xia Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, J., Liu, W. et al. 89Zr and 177Lu labeling of anti-DR5 monoclonal antibody for colorectal cancer targeting PET-imaging and radiotherapy. J Radioanal Nucl Chem 330, 997–1005 (2021). https://doi.org/10.1007/s10967-021-07979-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07979-3

Keywords

Navigation