Skip to main content
Log in

A unique high natural background radiation area in Indonesia: a brief review from the viewpoint of dose assessments

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Some areas around the world have anomalies with high natural radiation that may affect public health due to chronic-low-dose radiation exposure. In the paper, we summarized several studies that find Mamuju, Indonesia, a unique high natural radiation area. The majority of the relevant papers are about monitoring, main sources, and influential factors for the enhancement of radon and dose assessments. Under these circumstances, the Mamuju region is regarded as a promising area for conducting epidemiological studies, and it will provide a unique opportunity for improving and expanding low-dose-rate data on human health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. UNSCEAR (2010) United Nations Scientific Committee on the Effects of Atomic Radiation 2008 Report to the General Assembly: Annex B Exposures of the Public and Workers from Various Sources of Radiation, United Nation Publication, New York

  2. UNSCEAR (2017) United Nations Scientific Committee on the effects of atomic radiation: sources, effects and risks of ionizing radiation, UNSCEAR 2017, vol I, ANNEX B: epidemiological studies of cancer risk due to low-dose-rate radiation from environmental sources, United Nation Publication, New York

  3. Omori Y, Tokonami S, Sahoo SK et al (2017) Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J Radiol Prot 37:111–126. https://doi.org/10.1088/1361-6498/37/1/111

    Article  CAS  PubMed  Google Scholar 

  4. Hosoda M, Tokonami S, Omori Y et al (2015) Estimation of external dose by car-borne survey in Kerala, India. PLoS ONE 10:1–11. https://doi.org/10.1371/journal.pone.0124433

    Article  CAS  Google Scholar 

  5. Kudo H, Tokonami S, Omori Y et al (2015) Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat Prot Dosimetry 167:155–159. https://doi.org/10.1093/rpd/ncv235

    Article  CAS  PubMed  Google Scholar 

  6. Chandran Geetha A, Sreedharan H (2016) Review on studies in high background radiation areas (HBRAs) of various parts of the world. Int J Adv Res Biol Sci Int J Adv Res Biol Sci 3:163–169

    Google Scholar 

  7. Mubarak F, Fayez-Hassan M, Mansour NA et al (2017) Radiological investigation of high background radiation areas. Sci Rep. https://doi.org/10.1038/s41598-017-15201-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Syaeful H, Sukadana IG, Sumaryanto A (2014) Radiometric mapping for naturally occurring radioactive materials (NORM) assessment in Mamuju, West Sulawesi. Atom Indones. https://doi.org/10.17146/aij.2014.263

  9. Sukadana IG, Harijoko A, Setijadji LD (2015) Tectonic setting of adang volcanic complex in Mamuju Region, West Sulawesi Province. Eksplorium. https://doi.org/10.17146/eksplorium.2015.36.1.2769

  10. Muawanah FR, Priadi B, Widodo W et al (2019) Mobilitas uranium pada endapan sedimen sungai aktif di daerah Mamuju, Sulawesi Barat. Eksplorium 39:95. https://doi.org/10.17146/eksplorium.2018.39.2.4953

    Article  Google Scholar 

  11. Sukadana IG, Syaeful H, Indrastomo FD et al (2016) Identification of mineralization type and specific radioactive minerals in Mamuju, West Sulawesi. J East China Univ Technol 39:39–48

    Google Scholar 

  12. Rosianna I, Nugraha ED, Syaeful H et al (2020) Natural radioactivity of laterite and volcanic rock sample for radioactive mineral exploration in Mamuju, Indonesia. Geosciences 10:376. https://doi.org/10.3390/geosciences10090376

    Article  CAS  Google Scholar 

  13. Nurokhim K, Pudjadi E (2020) Assessment of natural radioactivity levels in soil sample from Botteng Utara Village, Mamuju Regency Indonesia. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1436/1/012139

    Article  Google Scholar 

  14. Nugraha ED, Hosoda M, Kusdiana et al Comprehensive exposure assessments from the viewpoint of health in a unique high natural background radiation area, Mamuju, Indonesia. Sci Rep 11:14578 (2021). https://doi.org/10.1038/s41598-021-93983-2

  15. Shilfa SN, Jumpeno BYEB, Nurokhim K (2020) Ambient dose measurement from high natural background radiation (HNBR) in Botteng Utara Village, Mamuju-Indonesia. J Phys Conf Ser 1436:012027. https://doi.org/10.1088/1742-6596/1436/1/012027

    Article  CAS  Google Scholar 

  16. Hosoda M, Nugraha ED, Akata N et al (2021) A unique high natural background radiation area—dose assessment and perspectives. Sci Total Environ 750:142346. https://doi.org/10.1016/j.scitotenv.2020.142346

    Article  CAS  PubMed  Google Scholar 

  17. Nugraha ED, Hosoda M, Winarni ID et al (2020) Dose assessment of radium-226 in drinking water from mamuju, a high background radiation area of Indonesia. Radiat Environ Med 9:79–83

    Google Scholar 

  18. Saputra MA, Nugraha ED, Purwanti T et al (2020) Exposures from radon, thoron, and thoron progeny in high background radiation area in Takandeang, Mamuju, Indonesia. Nukleonika 65:89–94. https://doi.org/10.2478/nuka-2020-0013

    Article  CAS  Google Scholar 

  19. Indonesia (1997) Republic of Indonesia Nuclear Law, Indonesia

  20. Indonesia (2007) Safety of ionizing radiation and radioactive sources

  21. BATAN (2014) Environmental gamma radiation dose rates map in Indonesia. Jakarta. http://sadarlingkungan.batan.go.id/berkas/kti/makalah//M_PTKMR_RE_0_KTINasionalDalamBentukBuku_PTKMR-BATAN_PetaPaparanRadiasiGammaIndonesia_210529192004.pdf

  22. BPS (2019) Mamuju regency in Figures 2018, Mamuju

  23. Alatas Z, Lusiyanti Y et al (2012) Cytogenetic response of the residents of high natural radiation area in Mamuju Regency, West Sulawesi. J Sains dan Teknol Nukl Indones. https://doi.org/10.17146/jstni.2012.13.1.932

  24. Tokonami S, Takahashi H, Kobayashi Y et al (2005) Up-to-date radon-thoron discriminative detector for a large scale survey. Rev Sci Instrum. https://doi.org/10.1063/1.2132270

  25. Tokonami S (2020) Characteristics of thoron (220Rn) and its progeny in the indoor environment. Int J Environ Res Public Health 17:8769. https://doi.org/10.3390/ijerph17238769

    Article  CAS  PubMed Central  Google Scholar 

  26. Zeeb H, Shannoun F, World Health Organization (2009) WHO handbook on indoor radon: a public health perspective. World Health Organization. https://apps.who.int/iris/handle/10665/44149

  27. Tokonami S (2018) Some thought on new dose conversion factors for radon progeny inhalation. Jpn J Heal Phys. https://doi.org/10.5453/jhps.53.282

    Article  Google Scholar 

  28. Tamakuma Y, Kranrod C, Suzuki T et al (2020) Passive-type radon monitor constructed using a small container for personal dosimetry. Int J Environ Res Public Health 17:1–11. https://doi.org/10.3390/ijerph17165660

    Article  CAS  Google Scholar 

  29. ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Elsevier B.V., Oxford, UK

  30. Nugraha ED, Wahyudi K, Iskandar D (2019) Radon concentrations in dwelling of south KALIMANTAN, Indonesia. Radiat Prot Dosimetry. https://doi.org/10.1093/rpd/ncz089

    Article  PubMed  Google Scholar 

  31. Omori Y, Tamakuma Y, Nugraha ED et al (2020) Impact of wind speed on response of diffusion-type radon-thoron detectors to thoron. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17093178

    Article  PubMed  PubMed Central  Google Scholar 

  32. World Health Organization, Water, Sanitation and Health Team (2004) Guidelines for drinking-water quality, vol 1, recommendations, 3rd edn. World Health Organization. https://apps.who.int/iris/handle/10665/42852

  33. World Health Organization (2018) Management of radioactivity in drinking-water. World Health Organization. https://apps.who.int/iris/handle/10665/272995. License: CC BY-NC-SA 3.0 IGO

  34. USEPA (1999) Environmental protection agency 40 CFR parts 141 and 142, national primary drinking water regulations; Radon-222; proposed rule, Washingtong DC, USA

  35. Nugraha ED, Hosoda M, Mellawati J et al (2021) Radon activity concentrations in natural hot spring water: dose assessment and health perspective. Int J Environ Res Public Health 18:1–8. https://doi.org/10.3390/ijerph18030920

    Article  CAS  Google Scholar 

  36. IAEA (2016) Criteria for radionuclide activity concentrations for food and drinking water, Vienna

  37. Mohanty AK, Sengupta D, Das SK et al (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38:153–165. https://doi.org/10.1016/j.radmeas.2003.08.003

    Article  CAS  Google Scholar 

  38. Omori Y, Tokonami S, Ishikawa T et al (2015) A pilot study for dose evaluation in high-level natural radiation areas of Yangjiang, China. J Radioanal Nucl Chem 306:317–323. https://doi.org/10.1007/s10967-015-4286-z

    Article  CAS  Google Scholar 

  39. Wei LX, Yuan YL (1998) Problems concerning dose assessments in epidemiology of high background radiation areas of Yangjiang, China. Radiat Prot Dosimetry 77:113–117. https://doi.org/10.1093/oxfordjournals.rpd.a032281

    Article  Google Scholar 

  40. Hendry JH, Simon SL, Wojcik A et al (2009) Human exposure to high natural background radiation: What can it teach us about radiation risks? J Radiol Prot 29:A29. https://doi.org/10.1088/0952-4746/29/2A/S03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boice JD, Hendry JH, Nakamura N et al (2010) Low-dose-rate epidemiology of high background radiation areas. Radiat Res 173:849–854. https://doi.org/10.1667/rr2161.1

    Article  CAS  PubMed  Google Scholar 

  42. Aliyu AS, Ramli AT (2015) The world’s high background natural radiation areas (HBNRAs) revisited: a broad overview of the dosimetric, epidemiological and radiobiological issues. Radiat Meas 73:51–59. https://doi.org/10.1016/j.radmeas.2015.01.007

    Article  CAS  Google Scholar 

  43. Anjos RM, Okuno E, Gomes PRS et al (2003) Radioecology teaching: evaluation of the background radiation levels from areas with high concentrations of radionuclides in soil. Eur J Phys 25:133–144. https://doi.org/10.1088/0143-0807/25/2/001

    Article  CAS  Google Scholar 

  44. Ghiassi-nejad M, Mortazavi SMJ, Cameron JR et al (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93. https://doi.org/10.1097/00004032-200201000-00011

    Article  CAS  PubMed  Google Scholar 

  45. Sohrabi M (2013) World high background natural radiation areas: need to protect public from radiation exposure. Radiat Meas. https://doi.org/10.1016/j.radmeas.2012.03.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. JP16K15368, JP16H02667, JP18KK0261, JP18K10023, JP20H00556, the Hirosaki University Institutional Research Grant and Indonesia government research grant (DIPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Tokonami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugraha, E.D., Hosoda, M., Tamakuma, Y. et al. A unique high natural background radiation area in Indonesia: a brief review from the viewpoint of dose assessments. J Radioanal Nucl Chem 330, 1437–1444 (2021). https://doi.org/10.1007/s10967-021-07908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07908-4

Keywords

Navigation