Skip to main content
Log in

Gamma dose monitoring to assess the excess lifetime cancer risk in western Himalaya

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present work focussed on demarcation of areas with cancer development risk through excess lifetime cancer risk (ELCR) by assessing spatial variability of gamma dose in outdoor and indoor environment in western Himalaya. Average outdoor gamma dose and outdoor annual effective dose exceed the corresponding world averages. An indoor gamma dose (barring Budgam, Ganderbal and Kashmir University of Kashmir division and Reasi city of Jammu division) also exceed the world average. The probability of cancer development is higher in main-Shopian (3.65 × 10−3), Mala Bagh (2.80 × 10−3), Bundoda (2.88 × 10−3) and Dhadpeta (2.89 × 10−3), as total ELCR exceeds the world average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNSCEAR (2000) Report of the United Nations scientific committee on the effects of atomic radiation, sources, effects, and risks of ionizing radiation. United Nations Sales Publication, New York

    Google Scholar 

  2. No IS. 115 (1996) International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources 283

  3. Ravikumar P, Somashekar RK (2013) Estimates of the dose of radon and its progeny inhaled inside buildings. Eur J Environ Sci 3(2):88–95

    Google Scholar 

  4. Ashraf M, Radha CA, Ahmad S, Masood S, Dar RA, Ramasubramanian V (2016) Evaluation of excess life time cancer risk due to natural radioactivity of the Lignite samples of the Nichahoma, lignite belt, North Kashmir. India Radiochimica Acta 104(9):673–680

    Article  CAS  Google Scholar 

  5. Protection R (2007) ICRP Publication 103. In: Ann ICRP, 37(2.4), 2

  6. Ajayi OS (2009) Measurement of activity concentrations of 40 K, 226 Ra and 232 Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48(3):323–332

    Article  CAS  PubMed  Google Scholar 

  7. Chandrasekaran A, Ravisankar R, Senthilkumar G, Thillaivelavan K, Dhinakaran B, Vijayagopal P, Bramha SN, Venkatraman B (2014) Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt J Basic Appl Sci 1(1):38–48

    Article  Google Scholar 

  8. Chen J, Timmins R, Verdecchia K, Sato T (2009) An estimation of Canadian population exposure to cosmic rays. Radiat Environ Biophys 48(3):317–322

    Article  PubMed  Google Scholar 

  9. Gabdo HT, Ramli AT, Sanusi MS, Saleh MA, Garba NN (2014) Terrestrial gamma dose rate in Pahang state Malaysia. J Radioanal Nucl Chem 299(3):1793–1798

    Article  CAS  Google Scholar 

  10. Gusain GS, Rautela BS, Sahoo SK, Ishikawa T, Prasad G, Omori Y, Sorimachi A, Tokonami S, Ramola RC (2012) Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India. Radiat Prot Dosimetry 152(1–3):42–45

    Article  CAS  PubMed  Google Scholar 

  11. Karunakara N, Yashodhara I, Kumara KS, Tripathi RM, Menon SN, Kadam S, Chougaonkar MP (2014) Assessment of ambient gamma dose rate around a prospective uranium mining area of South India–A comparative study of dose by direct methods and soil radioactivity measurements. Results Phys 4:20–27

    Article  Google Scholar 

  12. Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447

    Article  Google Scholar 

  13. Rafique M (2013) Ambient indoor/outdoor gamma radiation dose rates in the city and at high altitudes of Muzaffarabad (Azad Kashmir). Environ Earth Sci 70(4):1783–1790

    Article  CAS  Google Scholar 

  14. Rafique M, Basharat M, Azhar Saeed R, Rahamn S (2013) Effect of geology and altitude on ambient outdoor gamma dose rates in district poonch, azad Kashmir. Carp J Earth Environ Sci 8(4):165–173

    Google Scholar 

  15. Sharma P, Kumar Meher P, Prasad Mishra K (2014) Terrestrial gamma radiation dose measurement and health hazard along river Alaknanda and Ganges in India. J Radiat Res Appl Sci 7(4):595–600

    Article  Google Scholar 

  16. Taskin H, Karavus ME, Ay P, Topuzoglu AH, Hidiroglu SE, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    Article  CAS  PubMed  Google Scholar 

  17. Kapdan E, Altinsoy N, Karahan G, Yuksel A (2018) Outdoor radioactivity and health risk assessment for capital city Ankara, Turkey. J Radioanal Nucl Chem 318(2):1033–1042

    Article  CAS  Google Scholar 

  18. Jindal MK, Sar SK, Singh S, Arora A (2018) Risk assessment from gamma dose rate in Balod District of Chhattisgarh, India. J Radioanal Nucl Chem 317(1):387–395

    Article  CAS  Google Scholar 

  19. Sharma S, Kumar A, Mehra R (2017) Variation of ambient gamma dose rate and indoor radon/thoron concentration in different villages of Udhampur district, Jammu and Kashmir State, India. Radiat Protect Environ 40(3):133

    Article  Google Scholar 

  20. Sharma S, Kumar A, Mehra R, Mishra R (2019) Radiation hazards associated with radionuclides and theoretical evaluation of indoor radon concentration from soil exhalation of Udhampur District, Jammu and Kashmir State, India. J Soils Sediments 19(3):1441–1455

    Article  CAS  Google Scholar 

  21. Jeelani G, Deshpande RD, Shah RA, Hassan W (2017) Influence of southwest monsoons in the Kashmir Valley, western Himalayas. Isot Environ Health Stud 53(4):400–412

    Article  CAS  Google Scholar 

  22. Jeelani G, Deshpande RD (2017) Isotope fingerprinting of precipitation associated with western disturbances and Indian summer monsoons across the Himalayas. J Earth Syst Sci 126(8):108

    Article  Google Scholar 

  23. Lone SA, Jeelani G, Deshpande RD, Shah RA (2017) Evaluating the sensitivity of glacier to climate by using stable water isotopes and remote sensing. Environ Earth Sci 76(17):598

    Article  Google Scholar 

  24. Auden JB (1935) Traverses in the Himalaya. Rec Geol Surv India 69:123–167

    Google Scholar 

  25. Dar RA, Chandra R, Romshoo SA, Lone MA, Ahmad SM (2015) Isotopic and micromorphological studies of Late Quaternary loess–paleosol sequences of the Karewa Group: inferences for palaeoclimate of Kashmir Valley. Quatern Int 371:122–134

    Article  Google Scholar 

  26. Thakur VC (1981) Regional framework and geodynamic evolution of the Indus-Tsangpo suture zone in the Ladakh Himalayas. Earth Environ Sci Trans R Soc Edinb 72(2):89–97

    Article  Google Scholar 

  27. Searle MP, Windley BF, Coward MP, Cooper DJ, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. Geol Soc Am Bull 98(6):678–701

    Article  Google Scholar 

  28. Brookfield ME, Reynolds PH (1981) Late Cretaceous emplacement of the Indus suture zone ophiolitic melanges and an Eocene-Oligocene magmatic arc on the northern edge of the Indian plate. Earth Planet Sci Lett 55(1):157–162

    Article  Google Scholar 

  29. Shafiq M, Mir AA, Rasool R, Singh H, Ahmed P (2017) A geographical analysis of land use/land cover dynamics in Lolab watershed of Kashmir Valley, Western Himalayas using remote sensing and GIS. J Remote Sens GIS 6:189

    Article  Google Scholar 

  30. Inoue K, Fukushi M, Van Le T, Tsuruoka H, Kasahara S, Nimelan V (2020) Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment. Sci Rep 10(1):1–14

    Article  Google Scholar 

  31. https://bhuvan-app1.nrsc.gov.in/thematic/thematic/index.php#

  32. War SA, Nongkynrih P, Khathing DT, Iongwai PS (2009) Assessment of indoor radiation level in the environs of the uranium deposit area of West Khasi Hills District, Meghalaya, India. J Environ Radioact 100(11):965–969

    Article  CAS  PubMed  Google Scholar 

  33. Nambi KSV (1980) Environmental radiation monitoring using thermoluminescent dosimeter—an appraisal. BARC Report, BARC–I–575.

  34. Chougaonkar MP, Mehta NK, Srivastava GK, Khan AH, Nambi KSV (1996) Results of environmental radiation survey around uranium mining complex at Jaduguda using TLDs during 1984–94. In: Proceedings of the fifth national symposium on environment, Kolkatta, India, pp 34–37

  35. Nambi KSV (1979) Environmental radiation surveillance using thermoluminescence dosimeters—an appraisal. BARC Report, BARC/I–575.

  36. UNSCEAR (1993) Report of the United Nations scientific committee on the effects of atomic radiation, sources, effects, and risks of ionizing radiation. United Nations Sales Publication, New York

    Google Scholar 

  37. ICRP (1991) ICRP publication 60: 1990 recommendations of the International Commission on Radiological Protection (No. 60). Elsevier Health Sciences.

  38. Dragović S, Janković L, Onjia A (2006) Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiat Prot Dosimetry 121(3):297–302

    Article  PubMed  Google Scholar 

  39. Thakur VC, Rawat BS (1992) Geological map of the Western Himalaya. Published under the authority of the Surveyor General of India, Printing Group of Survey of India, p 101

    Google Scholar 

  40. Bhat IM, Ahmad T, Rao DS (2019) The tectonic evolution of the Dras arc complex along the Indus suture zone, western Himalaya: Implications for the Neo-Tethys ocean geodynamics. J Geodyn 124:52–66

    Article  Google Scholar 

  41. Shellnutt JG, Bhat GM, Wang KL, Yeh MW, Brookfield ME, Jahn BM (2015) Multiple mantle sources of the early Permian Panjal traps, Kashmir, India. Am J Sci 315(7):589–619

    Article  CAS  Google Scholar 

  42. Shellnutt JG, Bhat GM, Wang KL, Brookfield ME, Dostal J, Jahn BM (2012) Origin of the silicic volcanic rocks of the Early Permian Panjal Traps, Kashmir, India. Chem Geol 334:154–170

    Article  CAS  Google Scholar 

  43. UNSCEAR (1998) Report of the United Nations scientific committee on the effects of atomic radiation, sources, effects, and risks of ionizing radiation. United Nations Sales Publication, New York

    Google Scholar 

  44. Ero FA, Adebo BA (2011) Determination of gamma radiation shielding characterisyics of some woods in western Nigeria. Int Arch Sci Technol 3(2):14–20

    Google Scholar 

  45. Rangaswamy DR, Srinivasa E, Srilatha MC, Sannappa J (2015) Measurement of terrestrial gamma radiation dose and evaluation of annual effective dose in Shimoga District of Karnataka State, India. Radiat Protect Environ 38(4):154

    Article  Google Scholar 

  46. Avadhani DN, Mahesh HM, Narayana V, Karunakara N, Somashekarappa HM, Siddappa K (2001) Natural radioactivity in beach sands of Goa of south-west coast of India. Radiat Protect Environ 24(4):727–731

    Google Scholar 

  47. Prasad NG, Nagaiah N, Ashok GV, Karunakara N (2008) Concentrations of 226Ra, 232Th, and 40K in the soils of Bangalore region. India Health Phys 94(3):264–271

    Article  CAS  PubMed  Google Scholar 

  48. Sharma S, Kumar A (2019) Assessment of ambient gamma dose rate in different locations of Amritsar city, Punjab, India. Radiat Protect Environ 42(1):57

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy for the financial support of the work. We also thank the scientists and staff at Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre for the analysis. The inputs and suggestions of anonymous reviwers has improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. Jeelani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeelani, G., Hassan, W., Saleem, M. et al. Gamma dose monitoring to assess the excess lifetime cancer risk in western Himalaya. J Radioanal Nucl Chem 328, 245–258 (2021). https://doi.org/10.1007/s10967-021-07647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07647-6

Keywords

Navigation