Skip to main content
Log in

Fly ash radiological characterization from thermal power plants in Iraq

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The present study aims to measure the activity concentrations of radionuclides 238U, 232Th, 40K, 137Cs in samples of fly ashes collected from two thermal power plant in Iraq, by gamma spectroscopy using a NaI (Tl) detector. The radiological hazard related to these activities is also assessed through several worldwide commonly used indexes established by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The results are statistically presented, discussed and compared with literature and with worldwide reference averages: no significant radiation hazard comes from the analyzed fly ashes, although ~ 25% of the samples exceed the activity concentration limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Saleh FS, Al-Harshan GA (2008) Measurements of radiation level in petroleum products and wastes in Riyadh City Refinery. J Environ Radioact 99(7):1026–1031

    Article  CAS  PubMed  Google Scholar 

  2. Parial K, Guin R, Agrahari S, Sengupta D (2016) Monitoring of radionuclide migration around Kolaghat thermal power plant, West Bengal. India J Radioanal Nucl Chem 307(1):533–539

    Article  CAS  Google Scholar 

  3. Ambrosino F, Thinová L, Hýža M, Sabbarese C (2020) 214Bi/214Pb radioactivity ratio three-year monitoring in rainwater in Prague. Nukleonika 65(2):115–119

    Article  CAS  Google Scholar 

  4. UNSCEAR (2008) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation. Report to General Assembly with Scientific Annexes, United Nations, New York

  5. Al-Khawlany A, Khan A, Pathan J (2018) Review on studies in natural background radiation. Radiat Prot Environ 41(4):215

    Article  Google Scholar 

  6. Hanfi MYM (2019) Radiological assessment of gamma and radon dose rates at former uranium mining tunnels in Egypt. Environ Earth Sci 78:113

    Article  CAS  Google Scholar 

  7. Canbazoǧlu C, Doǧru M (2013) A preliminary study on 226Ra, 232Th, 40K and 137Cs activity concentrations in vegetables and fruits frequently consumed by inhabitants of ElazIǧ Region Turkey. J Radioanal Nucl Chem 295(2):1245–1249

    Article  PubMed  CAS  Google Scholar 

  8. Ajayi OS (2009) Measurement of activity concentrations of 40K, 226Ra and 232Th for assessment of radiation hazards from soils of the southwestern region of Nigeria. Radiat Environ Biophys 48(3):323–332

    Article  CAS  PubMed  Google Scholar 

  9. Mansour NA, Ahmed TS, Fayez-Hassan M, Hassan NM, Gomaa MA, Ali A (2012) Measurements of radiation level around the location of NORM in solid wastes at petroleum companies in Egypt. J Am Sci 8(6):252–260

    Google Scholar 

  10. Paschoa AS (1997) Naturally occurring radioactive materials (NORM) and petroleum origin. Appl Radiat Isot 48(10–12):1391–1396

    Article  CAS  Google Scholar 

  11. Attallah MF, Abdel-Monem AM (2014) Estimation of environmental impacts of NORM from some raw materials used in ceramic industry. Radiochemistry 56(3):332–338

    Article  CAS  Google Scholar 

  12. Abdelbary HM, Elsofany EA, Mohamed YT, Abo-Aly MM, Attallah MF (2019) Characterization and radiological impacts assessment of scale TENORM waste produced from oil and natural gas production in Egypt. Environ Sci Pollut Res 26(30):30836–30846

    Article  CAS  Google Scholar 

  13. El Afifi EM, Attallah MF, Hilal MA, El Reefy SA (2010) Treatment of TENORM waste: Phosphogypsum produced in fertilizer industry. Radiochemistry 52(4):441–445

    Article  CAS  Google Scholar 

  14. Attallah MF, Hilal MA, Moussa SI (2017) Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy. Appl Radiat Isot 128:224–230

    Article  CAS  PubMed  Google Scholar 

  15. El-Didamony H, Ali MM, Awwad NS, Attallah MF, Fawzy MM (2013) Radiological characterization and treatment of contaminated phosphogypsum waste. Radiochemistry 55(4):454–459

    Article  CAS  Google Scholar 

  16. IAEA (2003) International Atomic Energy Agency, Article VI.J of the IAEA’s Statute requires the Board of Governors to submit “an annual report to the General Conference concerning the affairs of the Agency and any projects approved by the Agency. United Nations, New York

  17. Saeedi M, Bazkiaei AR (2008) Characterization of thermal power plant fuel oil combustion residue. Res J Environ Sci 2(2):116–123

    Article  CAS  Google Scholar 

  18. Al-Malack MH, Bukhari AA, Al-Amoudi OS, Al-Muhanna HH, Zaidi TH (2013) Characteristics of fly ash produced at power and water desalination plants firing fuel oil. Int J Environ Res 7(2):455–466

    CAS  Google Scholar 

  19. Teinemaa E, Kirso U, Strommen MR, Kamens RM (2002) Atmospheric behaviour of oil-shale combustion fly ash in a chamber study. Atmos Environ 36(5):813–824

    Article  CAS  Google Scholar 

  20. El-Gamal H, Farid MEA, Abdel Mageed AI, Hasab M, Hassanien HM (2013) Considerable hazards produced by heavy fuel oil in operating thermal power plant in Assiut. Egypt Environ Sci Pollut Res 20(9):6331–6336

    Article  CAS  Google Scholar 

  21. Mahur AK, Kumar R, Sengupta D, Prasad R (2008) Estimation of radon exhalation rate, natural radioactivity and radiation doses in fly ash samples from Durgapur thermal power plant, West Bengal. India J Environ Radioact 99(8):1289–1293

    Article  CAS  PubMed  Google Scholar 

  22. Güleç N, Günal B, Erler A (2001) Assessment of soil and water contamination around an ash-disposal site: A case study from the Seyitö coal-fired power plant in western Turkey. Environ Geol 40(3):331–344

    Article  Google Scholar 

  23. Sundar SB, Danalakshmi B, Santhanam R (2008) Radon measurements in fly ash buildings near major thermal power stations in India using SSNTD. Radiat Meas 43(1):S392–S394

    Article  CAS  Google Scholar 

  24. Khan AJ, Prasad R, Tyagi RK (1992) Measurement of radon exhalation rate from some building materials. Int J Radiat Appl Instrum D 20(4):609–610

    CAS  Google Scholar 

  25. Papastefanou C (2008) Radioactivity of coals and fly ashes. J Radioanal Nucl Chem 275(1):29–35

    Article  CAS  Google Scholar 

  26. Parami VK, Sahoo SK, Yonehara H, Takeda S, Quirit LL (2010) Accurate determination of naturally occurring radionuclides in Philippine coal-fired thermal power plants using inductively coupled plasma mass spectrometry and γ-spectroscopy. Microchem J 95(2):181–185

    Article  CAS  Google Scholar 

  27. Zeevaert T, Sweeck L, Vanmarcke H (2006) The radiological impact from airborne routine discharges of a modern coal-fired power plant. J Environ Radioact 85(1):1–22

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed IK (2020) External and Internal Hazard indices in fly ash samples from Al-Hartha thermal power station. IOP Conf Ser Mater Sci Eng 928 072070

  29. Al-Masri MS, Haddad K (2012) NORM emissions from heavy oil and natural gas fired power plants in Syria. J Environ Radioact 104(1):71–74

    Article  CAS  PubMed  Google Scholar 

  30. Chang MCO, Chow JC, Watson JG, Hopke PK, Yi SM, England GC (2004) Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J Air Waste Manag Assoc 54(12):1494–1505

    Article  CAS  PubMed  Google Scholar 

  31. Joshi S, Gupta KK, Ubale SK, Dhoble SJ (2017) High dose TL response of fly ash collected from coal fired thermal power plant. Radiat Meas 105:47–53

    Article  CAS  Google Scholar 

  32. Al-Malack MH, Bukhari AA, Al-Muhanna HH (2016) Integrated disposal scheme of heavy fuel oil fly ash in Saudi Arabia. Arab J Sci Eng 41(10):3911–3921

    Article  CAS  Google Scholar 

  33. Mohammed H, Sadeek S, Mahmoud AR (2016) Accurate determination of uranium and thorium in Egyptian oil ashes. Microchem J 124:699–702

    Article  CAS  Google Scholar 

  34. Vaasma T, Kiisk M, Meriste T, Tkaczyk AH (2014) The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants. J Environ Radioact 138:427–433

    Article  CAS  PubMed  Google Scholar 

  35. Huffman GP, Huggins FE, Shah N, Huggins R, Linak WP, Miller CA, Pugmire RJ, Meuzelaar HL, Seehra MS, Manivannan A (2000) Characterization of fine particulate matter produced by combustion of residual fuel oil. J Air Waste Manag Assoc 50(7):1106–1114

    Article  CAS  PubMed  Google Scholar 

  36. Bem H, Wieczorkowski P, Budzanowski M (2002) Evaluation of technologically enhanced natural radiation near the coal-fired power plants in the Lodz region of Poland. J Environ Radioact 61(2):191–201

    Article  CAS  PubMed  Google Scholar 

  37. Mishra UC (2004) Environmental impact of coal industry and thermal power plants in India. J Environ Radioact 72(1–2):35–40

    Article  CAS  PubMed  Google Scholar 

  38. USGS (1997) U.S. Geological Survey - Department of the Interior, Radioactive Elements in Coal and Fly Ash : Their Environmental Effects, Fact Sheet FS-163–97. Reston, VA, USA

  39. Sabbarese C, Ambrosino F, D’Onofrio A, Roca V (2021) Radiological characterization of natural building materials from the Campania region (Southern Italy). Constr Build Mater 268:121087

    Article  CAS  Google Scholar 

  40. Farrar H (2000) Twenty new ISO standards on dosimetry for radiation processing. Radiat Phys Chem 57(3–6):717–720

    Article  CAS  Google Scholar 

  41. Ambrosino F, Stellato L, Sabbarese C (2020) A case study on possible radiological contamination in the Lo Uttaro landfill site (Caserta Italy). J Phys Conf Ser 1548:012001

    Article  CAS  Google Scholar 

  42. Al-Jundi J, Salah W, Bawa’aneh MS, Afaneh F (2006) Exposure to radiation from the natural radioactivity in Jordanian building materials. Radiat Prot Dosim 118(1):93–96

    Article  CAS  Google Scholar 

  43. Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai. Egypt J Radiat Res Appl Sci 8:17–25

    CAS  Google Scholar 

  44. Hanfi MY, Masoud MS, Ambrosino F, Mostafa MYA (2021) Natural radiological characterization at the Gabal El Seila region (Egypt). Appl Radiat Isot 173:109705

    Article  CAS  PubMed  Google Scholar 

  45. Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447

    Article  Google Scholar 

  46. Gupta M, Mahur AK, Varshney R, Sonkawade RG, Verma KD, Prasad R (2013) Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Radiat Meas 50:160–165

    Article  CAS  Google Scholar 

  47. UNSCEAR (2010) United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and effects of ionizing radiation - Exposures of the public and workers from various sources of radiation, Report to General Assembly with Scientific Annexes. United Nations, New York

  48. Ali KK, Marouf BA (2011) Distribution of 137Cs in the surface soil from selected areas in Iraq. Iraqi Bull Geol Mining 7(2):1–8

    Google Scholar 

  49. Marouf BA (1992) Measurement of radionuclides into Iraq during 1987 (post Chernobyl). Int J Environ Sci 42:137–143

    CAS  Google Scholar 

  50. Öztürk BC, Çam NF, Yaprak G (2013) Reference levels of natural radioactivity and 137Cs in and around the surface soils of Kestanbol pluton in Ezine region of Çanakkale province. Turkey J Environ Sci Heal A 48(12):1522–1532

    Article  CAS  Google Scholar 

  51. Cevik U, Damla N, Nezir S (2007) Radiological characterization of Cayirhan coal-fired power plant in Turkey. Fuel 86(16):2509–2513

    Article  CAS  Google Scholar 

  52. Karangelos DJ, Petropoulos NP, Anagnostakis MJ, Hinis EP, Simopoulos SE (2004) Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants. J Environ Radioact 77(3):233–246

    Article  CAS  PubMed  Google Scholar 

  53. Barros H, Sajo-Bohus L, Abril JM, Greaves ED (2005) Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela. Radioprotection 40:S183–S189

    Article  Google Scholar 

  54. Liu G, Luo Q, Ding M, Feng J (2015) Natural radionuclides in soil near a coal-fired power plant in the high background radiation area. South China Environ Monit Assess 187(6):356

    Article  PubMed  CAS  Google Scholar 

  55. Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Phoungthong K, Khan R, Rashid MB, Islam ARMT, Techato K (2019) Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim Acta 107(3):243–259

    Article  CAS  Google Scholar 

  56. Lu X, Zhao C, Chen C, Liu W (2012) Radioactivity level of soil around Baqiao coal-fired power plant in China. Radiat Phys Chem 81(12):1827–1832

    Article  CAS  Google Scholar 

  57. Flues M, Camargo IMC, Figueiredo FPM, Silva PSC, Mazzilli BP (2007) Evaluation of radionuclides concentration in Brazilian coals. Fuel 86(5–6):807–812

    Article  CAS  Google Scholar 

  58. Fujii K, Ochi K, Ohbuchi A, Koike Y (2018) Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests. J Environ Manag 217:157–163

    Article  CAS  Google Scholar 

  59. Ohbuchi A, Fujii K, Kasari M, Koike Y (2020) Characterization of soluble and insoluble radioactive cesium in municipal solid waste incineration fly ash. Chemosphere 248:126007

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa N, Amano T, Koike Y (2021) Elution control of radioactive cesium in MSWI fly ash using water repellent treatment. J Mater Cycles Waste Manag 23:158–164

    Article  CAS  Google Scholar 

  61. Chauhan RP, Kant K, Sharma SK, Chakarvarti SK (2003) Measurement of alpha radioactive air pollutants in fly ash brick dwellings. Radiat Meas 36(1–6):533–536

    Article  CAS  Google Scholar 

  62. Ambrosino F, Thinová L, Briestenský M, Sabbarese C (2020) Study of 222Rn continuous monitoring time series and dose assessment in six European caves. Radiat Prot Dosim 191(2):233–237

    Article  CAS  Google Scholar 

  63. Al-Kaabi MA, Hmood AN (2019) Study of the radiological doses in Karbala city. Iraq Int J Radiat Res 17(1):171–176

    Google Scholar 

  64. Kaynar SC (2018) Annual effective dose values from 137Cs activity concentrations in soils of Manisa. Turkey Nucl Sci Tech 29:100

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyam N. B. Khalaf.

Ethics declarations

Conflict of interests

The authors declare they have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I.K., Khalaf, H.N.B., Ambrosino, F. et al. Fly ash radiological characterization from thermal power plants in Iraq. J Radioanal Nucl Chem 329, 1237–1245 (2021). https://doi.org/10.1007/s10967-021-07907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07907-5

Keywords

Navigation