Skip to main content
Log in

A rapid method for 137Cs preconcentration from seawater by using polyaluminum chloride as coagulant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A rapid method was developed herein for preconcentrating and determining 137Cs in seawater. The coagulant polyaluminum chloride was used to accelerate the ammonium phosphomolybdate sedimentation for preconcentrating 137Cs from large volumes of seawater, followed by direct measurement with gamma-ray spectrometry. Compared with the conventional method, this new approach can reduce the preconcentration time from 4 to 5 days to within a single day. The proposed method was applied to the survey of samples collected surrounding Taiwan since 2018. The mean range of 137Cs level was about 1–2 Bq m−3, far below the Taiwan regulatory limit of 2 Bq L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Namiki Y, Nakimi T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y (2012) Inorganic-organic magnetic nanocomposites for use in preventive medicine: a rapid and reliable elimination system for cesium. Pharm Res 29:1404–1418

    Article  CAS  Google Scholar 

  2. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P (2013) Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. J Nanopart Res 15:1689–1698

    Article  Google Scholar 

  3. Parajuli D, Tanaka H, Hakuta Y, Minami K, Fukuda S, Umeoka K, Kamimura R, Hayashi Y, Ouchi M, Kawamoto T (2013) Dealing with the aftermath of Fukushima Daiichi nuclear accident: decontamination of radioactive cesium enriched ash. Environ Sci Technol 47:3800–3806

    Article  CAS  Google Scholar 

  4. Aoyama M (2018) Long-range transport of radiocaesium derived from global fallout and the Fukushima accident in the Pacific Ocean since 1953 through 2017—part I: source term and surface transport. J Radioanal Nucl Chem 318:1519–1542

    Article  CAS  Google Scholar 

  5. Huang CY, Lee JD, Tseng CL, Lo JM (1994) A rapid method for the determination of 137Cs in environmental water samples. Anal Chim Acta 294:221–226

    Article  CAS  Google Scholar 

  6. Nakano M, Kokubun Y, Sasaki T, Takeishi M (2009) Analytical method of gamma emitters in seawater using coprecipitation with nickel hexacyanoferrate(II) and iron(III)hydroxid. Radioisotopes 58:61–69

    Article  CAS  Google Scholar 

  7. Yasutaka T, Miyazu S, Kondo Y, Tsuji H, Arita K, Hayashi S, Takahashi A, Kawamoto T, Aoyama M (2016) Development of a copper-substituted, Prussian blue-impregnated, nonwoven cartridge filter to rapidly measure radiocesium concentration in seawater. J Nucl Sci Technol 53:1243–1250

    Article  CAS  Google Scholar 

  8. Matsumoto K, Yamato H, Kakimoto S, Yamashita T, Wada R, Tanaka Y, Akita M, Fujimura T (2018) A highly efficient adsorbent Cu-Perusian Blue@Nanodiamond for cesium in diluted artificial seawater and soil-treated wastewater. Sci Res 8:5807

    Google Scholar 

  9. Kusakabe M, Takata H (2020) Temporal trends of 137Cs concentration in seawaters and bottom sediments in coastal waters around Japan: implications for the Kd concept in the dynamic marine environment. J Radioanal Nucl Chem 323:567–580

    Article  CAS  Google Scholar 

  10. Ayama M, Tsumune D, Hamajima Y (2013) Distribution of 137Cs and 134Cs in the North Pacific Ocean: impacts of the TEPCO Fukushima-Daiichi NPP accident. J Radioanal Nucl Chem 296:535–539

    Article  Google Scholar 

  11. Hirose K, Aoyama M, Igarashi Y, Komura K (2007) Improvement of 137Cs analysis in small volume seawater samples using the Ogoya underground facility. J Radioanal Nucl Chem 276:795–798

    Article  Google Scholar 

  12. Pike SM, Buesseler KO, Breier CF, Dulaiova H, Stastna K, Sebesta F (2012) Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectroscopy and inductively coupled mass spectrometry. J Radioanal Nucl Chem 296:369–374

    Article  Google Scholar 

  13. Kameník J, Dulaiova H, Buesseler KO, Pike SM, Št’astná K (2013) Cesium-134 and 137 activities in the central North Pacific Ocean after the Fukushima Dai-ichi Nuclear Power Plant accident. Biogeosciences 10:6045–6052

    Article  Google Scholar 

  14. Aoyama M, Hirose K, Miyao T, Igarashi Y (2000) Low level 137Cs measurements in deep seawater samples. Appl Radiat Isot 53:159–162

    Article  CAS  Google Scholar 

  15. Park JH, Chang BU, Kim YJ, Seo JS, Choi SW, Yun JY (2008) Determination of low 137Cs concentration in seawater using ammonium 12-molybdophosphate adsorption and chemical separation method. J Environ Radioact 99:1815–1818

    Article  CAS  Google Scholar 

  16. Florou H, Nicolaou G, Evangeliou N (2010) The concentration of 137Cs in the surface of the Greek marine environment. J Environ Radioact 101:654–657

    Article  CAS  Google Scholar 

  17. Yu W, He J, Lin W, Li Y, Men W, Wang F, Huang J (2015) Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the northwest Pacific. J Environ Radioact 142:54–61

    Article  CAS  Google Scholar 

  18. Degn F, He J, Ling F, Yu W, Men W, Wang F (2020) Effect of settling time on the adsorption of 137Cs onto AMP in the AMP-coprecipitation method. Mar Pollut Bull 161:111713–111717

    Article  Google Scholar 

  19. He J (2016) An integrated device for coprecipitation and filtration of radiocesium in seawater. J Environ Radioact 165:35–38

    Article  CAS  Google Scholar 

  20. Kameník J, Dulaiova H, Šebesta F, Šťastná K (2013) Fast concentration of dissolved forms of cesium radioisotopes from large seawater samples. J Radioanal Nucl Chem 296:841–846

    Article  Google Scholar 

  21. Wei N, Zhang Z, Liu D, Wu Y, Wang J, Wang Q (2015) Coagulation behavior of polyaluminum chloride: effects of pH and coagulant dosage. Chin J Chem Eng 23:1041–1046

    Article  CAS  Google Scholar 

  22. Wang Y, Gao BY, Xu XM, Xu WY (2010) The effect of total hardness and ionic strength on the coagulation performance and kinetics of aluminum salts to remove humic acid. Chem Eng Sci 160:150–156

    Article  CAS  Google Scholar 

  23. Yann T, Miyanaga K, Tan R (2021) The effectiveness of different types of polyaluminum chloride (PAC) and aluminum sulfate (alum) with Ca(OCl)2 dosing for treatment of surface water of tonle sap river. In: The 13th AUN/SEED-Net regional on chemical engineering 2020

  24. Liu X, Seki H, Maruyama H (2012) Flocculation of kaolin and kanto loam by methylated soy protein. Sep Purif Technol 93:1–7

    Article  CAS  Google Scholar 

  25. Yan M, Wang D, Ni J, Qu J, Chow CWK, Liu H (2008) Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics. Water Res 42:3361–3370

    Article  CAS  Google Scholar 

  26. Lotfi I, Ebrahimi A, Hajian M (2014) Comparison study of turbidity removal using synthetized poly-aluminum chloride-sulfate and poly-aluminum chloride in aqueous solutions. Int J Environ Health Eng 3:1–6

    Article  CAS  Google Scholar 

  27. Intercomparison of radioactivity analysis in environmental samples based on the 2017 cooperation program between JCAC and RMC. Radiation monitoring center, Atomic energy council, Executive yuan. https://www.aec.gov.tw/webpage/UploadFiles/trmc/project/2020411114385542_1.pdf

  28. Inoue M, Hanaki S, Takehara R, Kofuji H, Matsunaka T, Kuroda H, Taniuchi Y, Kasai H, Morita T, Miki S, Nagao S (2021) Lateral variations of 134Cs and 228Ra concentrations in surface waters in the western North Pacific and its marginal sea (2018–2019): implications for basin-scale and local current circulations. Prog Oceanogr 195:102587

  29. Wu J (2018) Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China Seas: evaluation based on field observation of 137 Cs. Mar Pollut Bull 127:45–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Atomic Energy Council, Executive Yuan, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Ling Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WL., Pan, CY., Huang, HH. et al. A rapid method for 137Cs preconcentration from seawater by using polyaluminum chloride as coagulant. J Radioanal Nucl Chem 329, 1345–1351 (2021). https://doi.org/10.1007/s10967-021-07905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07905-7

Keywords

Navigation