Skip to main content
Log in

Simple Radiometric Determination of Strontium-90 in Seawater Using Measurement of Yttrium-90 Decay Time Following IronBarium Co-precipitation

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A radiometric quantitative methodology of 90Sr in seawater was developed using a measurement of the 90Y decay time following iron-barium co-precipitation. With calculations of its decay time, the radioactivity of 90Sr can be indirectly determined under conditional environmental samples. In addition, to avoid the interference of other radionuclide, the prepared samples were measured using a germanium semi-conductivity detector; then, the deposited radioactivity was subtracted from the actual measurement values of beta-ray counting. In this paper, the seawater samples were collected within 2 km around Fukushima Daiichi Nuclear Power Plants during the term from October 2011 to March 2012. This method showed good linearity between the 90Sr concentration and the total beta counting following the proposed method, with a correlation coefficient of 0.99 in seawater sample analysis. No interference that was caused by other radionuclides, such as radioactive cesium, was not observed in the quantification of 90Sr. The whole process requires 12 h to quantify 90Sr; this time is 1/40 shorter than traditional milking-low background gas-flow counting method. The lower limit of detection (average value n = 60) of the 90Sr radioactivity was shown to be 0.03 Bq/L (uncertainty 4.2%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Firestone and V. S. Shirley, “Table of Isotopes (CDROM Ver.)”, 8th ed., 1996, John Wiley & Sons Inc.

    Google Scholar 

  2. Ministry of Health Labour and Welfare (Japan), Inspection of Radiomaterials in Tap water, http://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/01_houshasei_120328_m1.pdf.

  3. Fukushima Prefecture Government, Results of Environmental Radioactivity Monitoring, http://www.pref.fukushima.lg.jp/sec_file/monitoring/k-1/kaisui110516-110530.pdf.

  4. Japan Atomic Energy Agency, Database for Radioactive Substance Monitoring Data, http://emdb.jaea.go.jp/emdb/en/.

  5. MEXT, Research and Development Bureau, Atomic Energy Division, Analytical Methods of the Radioactive Strontium, No. 2, Japan, 2000.

    Google Scholar 

  6. Y. Takagai, M. Furukawa, Y. Kameo, and K. Suzuki, Anal. Methods, 2014, 6, 355.

    Article  CAS  Google Scholar 

  7. M. Furukawa and Y. Takagai, Anal. Chem., 2016, 88, 9397.

    Article  CAS  PubMed  Google Scholar 

  8. A. Ayala and Y. Takagai, Anal. Sci., 2018, 34, 387.

    Article  CAS  PubMed  Google Scholar 

  9. M. Furukawa, M. Matsueda, and Y. Takagai, Anal. Sci., 2018, 34, 471.

    Article  CAS  PubMed  Google Scholar 

  10. S. Scarpitta, J. Odin-McCabe, R. Gaschott, A. Meier, and E. Klug, Health Phys., 1999, 76.

  11. Y. Takagai, M. Furukawa, Y. Kameo, M. Matsueda, and K. Suzuki, Bunseki Kagaku, 2017, 66, 223.

    Article  CAS  Google Scholar 

  12. M. Furukawa, M. Matsueda, and Y. Takagai, Bunseki Kagaku, 2017, 66, 181.

    Article  CAS  Google Scholar 

  13. C. Duenas, M. C. Fernandez, E. Gordo, S. Canete, and M. Pérez, Atmos. Environ., 2011, 45, 1015.

    Article  CAS  Google Scholar 

  14. D. Zapata-Garcia, M. Llaurado, and G. Rauret, Appl. Radiat. Isot., 2009, 67, 978.

    Article  CAS  PubMed  Google Scholar 

  15. M. Palomo, M. Villa, N. Casacuberta, A. Penalver, F. Borrull, and C. Aguilar, Appl. Radiat. Isot., 2011, 69, 1274.

    Article  CAS  PubMed  Google Scholar 

  16. P. Thakur and G. P. Mulholland, Appl. Radiat. Isot., 2011, 69, 1307.

    Article  CAS  PubMed  Google Scholar 

  17. S. Wisser, E. Frenzel, and M. Dittmer, Appl. Radiat. Isot., 2006, 64, 368.

    Article  CAS  PubMed  Google Scholar 

  18. R. I. Kleinschmidt, Appl. Radiat. Isot., 2004, 61, 333.

    Article  CAS  PubMed  Google Scholar 

  19. M. Bau, Geochim. Cosmochim. Acta, 1999, 63, 67.

    Article  CAS  Google Scholar 

  20. C. Liu, Sci. China, Ser. D: Earth Sci., 2002, 45, 449.

    Article  CAS  Google Scholar 

  21. C.-K. D. Hsi and D. Langmuir, Geochim. Cosmochim. Acta, 1985, 49, 1931.

    Article  CAS  Google Scholar 

  22. Nuclear Regulation Authority, Radioactivity Concentration in the Seawater Near and Around Fukushima Daiichi NPP, http://radioactivity.nsr.go.jp/en/contents/13000/12796/24/349_1_20180525.pdf.

Download references

Acknowledgments

The authors gratefully acknowledge funding by the Ministry of Education, Culture, Sports, Science & Technology in Japan (MEXT), Human Resource Development and Research Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Takagai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konno, M., Takagai, Y. Simple Radiometric Determination of Strontium-90 in Seawater Using Measurement of Yttrium-90 Decay Time Following IronBarium Co-precipitation. ANAL. SCI. 34, 1277–1283 (2018). https://doi.org/10.2116/analsci.18P145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P145

Keywords

Navigation