Skip to main content
Log in

Preparation of forcespun γ-irradiated chitin from shrimp shell wastes and its evaluation as uranyl ion adsorbent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chitosan (CS) was synthesized by gamma irradiation of chitin extracted from shrimp shell wastes. CS nanofibers (CS-NFs) with a diameter of 500 nm were prepared using forcespinning method. The obtained CS-NFs were then used to adsorb uranium (U) from aqueous solution. Under optimal conditions, pH 6 and contact time 210 min, the maximum U adsorption was 142 mg g−1. The results showed that CS-NFs adsorb U from aqueous media based on the Langmuir isotherm model. Also, kinetic studies showed that the adsorption process follows a pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. Experientia Suppl 101:133–164

    Article  Google Scholar 

  2. Van Suc N, Ly HTY (2011) Adsorption of U(VI) from aqueous solution onto modified chitosan. Int J ChemTech Res 3:1993–2002

    Google Scholar 

  3. Gregorio C (2005) Recent development in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    Article  Google Scholar 

  4. Wan Ngah WS, Endua CS, Mayanar R (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190

    Article  Google Scholar 

  5. Pollard SJT, Fowler GD, Sollars CJ, Perry R (1992) Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Environ 116:31–52

    Article  CAS  Google Scholar 

  6. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168:1053–1058

    Article  CAS  Google Scholar 

  7. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater B 97:219–243

    Article  CAS  Google Scholar 

  8. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  9. Bakar NHHA, Tan WL (2016) Natural composite membranes for water remediation: toward a sustainable tomorrow. In: Ahmad M, Ismail M, Riffat S (eds) Renewable energy and sustainable technologies for building and environmental applications. Springer, Cham

    Google Scholar 

  10. Mousavi S, Shahraki F, Aliabadi M, Haji A, Deuber F, Adlhart C (2019) Surface enriched nanofiber mats for efficient adsorption of Cr(VI) inspired by nature. J Environ Chem Eng 7:102817

    Article  Google Scholar 

  11. Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382

    Article  CAS  Google Scholar 

  12. Sabetzadeh N, Gharehaghaji AA (2017) How porous nanofibers have enhanced the engineering of advanced materials: a review. J Text Polym 5:57–72

    Google Scholar 

  13. Shi X, Zhou W, Ma D, Ma Q, Bridges D, Ma Y, Hu A (2015) Electrospinning of nanofibers and their applications for energy devices. J Nanomater 2015:140716

    Google Scholar 

  14. Esfahani H, Jose R, Ramakrishna S (2017) Electrospun ceramic nanofiber mats today: synthesis, properties, and applications. Materials 10:1238

    Article  Google Scholar 

  15. Padron S, Fuentes A, Aruntu CD, Lozano K (2013) Experimental study of nanofiber production through forcespinning. J Appl Phys 113:024318

    Article  Google Scholar 

  16. Almetwally AA, El-Sakhawy M, Elshakankery M, Kasem MH (2017) Technology of nano-fibers: production techniques and properties—critical review. J Text Assoc 78:5–14

    Google Scholar 

  17. Xu F, Weng B, Gilkerson R, Materon LA, Lozano K (2015) Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr Polym 115:16–24

    Article  CAS  Google Scholar 

  18. Rahman MM, Kabir S, Rashid TU, Nesa B, Nasrin R, Haque P, Khan MA (2013) Effect of γ-irradiation on the thermomechanical and morphological properties of chitosan obtained from prawn shell: evaluation of potential for irradiated chitosan as plant growth stimulator for Malabar spinach. Radiat Phys Chem 82:112–118

    Article  CAS  Google Scholar 

  19. Kasaai MR (2007) Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydr Polym 68:477–488

    Article  CAS  Google Scholar 

  20. Zainol I, Akil H, Mastor A (2009) Effect of γ-irradiation on the physical and mechanical properties of chitosan powder. Mater Sci Eng C 29:292–297

    Article  CAS  Google Scholar 

  21. El-Nesr EM, Raafat AI, Nasef SM, Soliman EA, Hegazy EA (2013) Chitin and chitosan extracted from irradiated and non-irradiated shrimp wastes (comparative analysis study). Arab J Nucl Sci Appl 46:53–66

    Google Scholar 

  22. Czechowska-Biskup R, Jarosinska D, Rokita B, Ulanlki P, Rosiak JM (2012) Determination of degree of deacetylation of chitosan comparison methods. Prog Chem Appl Chitin Deriv 17:5–20

    CAS  Google Scholar 

  23. Peng F, Rea L, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317

    Article  CAS  Google Scholar 

  24. Haider S, Park S-Y (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96

    Article  CAS  Google Scholar 

  25. Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromol 7:2710–2714

    Article  CAS  Google Scholar 

  26. Gu BK, Park SJ, Kim MS, Kang CM, Kim J, Kim C-H (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr Polym 97:65–73

    Article  CAS  Google Scholar 

  27. Li WC, Victor DM, Chakrabarti CL (1980) Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions. Anal Chem 52:520–534

    Article  CAS  Google Scholar 

  28. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M (2005) Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol 96:1241–1248

    Article  CAS  Google Scholar 

  29. Yi Z, Li J (2012) Removal of uranium(VI) from aqueous solution by dry chitosan powder. Adv Mater Res 366:434–443

    Article  CAS  Google Scholar 

  30. Hosseini M, Keshtkar AR, Moosavian MA (2016) Electrospun chitosan/baker’s yeast nanofibre adsorbent: preparation, characterization and application in heavy metal adsorption. Bull Mater Sci 39:1091–1100

    Article  CAS  Google Scholar 

  31. Pang C, Liu Y, Cao X, Hua R, Wang C, Li C (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286:185–193

    Article  CAS  Google Scholar 

  32. Kutahyalı C, Eral M (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol 40:109–114

    Article  Google Scholar 

  33. Meroufel B, Benali O, Benyahia M, Benmoussa Y, Zenasni MA (2013) Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies. J Mater Environ Sci 4:482–491

    CAS  Google Scholar 

  34. Tan KL, Hameed BH (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25–48

    Article  CAS  Google Scholar 

  35. Simonin JP (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263

    Article  CAS  Google Scholar 

  36. Niu Y, Ying D, Li K, Wang Y, Jia J (2016) Fast removal of copper ions from aqueous solution using an ecofriendly fibrous adsorbent. Chemosphere 161:501–509

    Article  CAS  Google Scholar 

  37. He J, Sun F, Han F, Gu J, Ou M, Xu W, Xu X (2018) Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U(VI) from aqueous solutions. RSC Adv 8:12684–12691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Firouzzare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamian, R., Firouzzare, M. Preparation of forcespun γ-irradiated chitin from shrimp shell wastes and its evaluation as uranyl ion adsorbent. J Radioanal Nucl Chem 329, 731–739 (2021). https://doi.org/10.1007/s10967-021-07862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07862-1

Keywords

Navigation