Skip to main content
Log in

Characteristics of radionuclides in soil and tea plant (Camellia sinensis) in Hoa Binh, Vietnam

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Understanding concentration and mobility behavior of radionuclides in soil and plant plays an important role and application. In this study, radionuclides in 28 soil layers and tea plant parts samples at Hoa Binh, Vietnam were investigated by gamma spectrometry. The results showed that the 137Cs concentration significantly decreased with the depth, while other radionuclides was almost unchanged. The transfer factor (TF) for 137Cs from soil to tea root was highest, followed by that from soil to trunk and from soil to leaf. By contrast, for the natural radionuclides, the highest transfer factor was recorded from soil to leaf, followed by the transfer factor from soil to trunk and the lowest one was observed from soil to root. Regarding the trending bioaccumulation (BFA) for tea plant decreased as the solubility and mobility of radionuclides decreased BFA (40K > 137Cs > 226Ra > 228Ra).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ioannides KG, Mertzimekis TJ, Papachristodoulou CA, Tzialla CE (1997) Measurements of natural radioactivity in phosphate fertilizers. Sci Total Environ 196:63–67

    Article  CAS  Google Scholar 

  2. Azeez HH, Mansour HH, Ahmad ST (2019) Transfer of natural radioactive nuclides from soil to plant crops. Appl Radi Isot 147:152–158

    Article  CAS  Google Scholar 

  3. Querfeld R, Pasi AE, Shozugawa K, Vockenhuler C, Synai HA, Steier P, Steinhauser G (2019) Radionuclides in surface waters around the damaged Fukushima Daiichi NPP one month after the accident: Evidence of significant tritium release into the environment. Sci Total Environ 689:451–456

    Article  CAS  PubMed  Google Scholar 

  4. Takagi M, Tanaka A, Nakayama SF (2019) Estimation of the radiation dose via indoor dust in the Ibaraki and Chiba prefectures, 150–200 km south from the Fukushima Daiichi Nuclear Power Plant. Chemosphere 236:124778–124786

    Article  CAS  PubMed  Google Scholar 

  5. Cwanek A, Mietelski JW, Lokas E, Olech MA, Anczkiewicz R, Misiak R (2020) Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. Chemosphere 239:124783–124793

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen DC, Khanh PL, Jodlowski P, Pieczonka J, Piestrzynski A, Van HD, Nowak J (2016) Natural radioactivity at the Sin Quyen iron-oxide-copper-gold deposit in North Vietnam. Acta Geophys 64:2305–2321

    Article  Google Scholar 

  7. Van HD, Dinh CN, Jodlowski P, Kovacs T (2019) High-level natural radionuclides from the Mandena deposit, South Madagascar. J Radioanal Nucl Chem 319:1331–1338

    Article  CAS  Google Scholar 

  8. Chau ND, Jadwiga P, Adam P, Van Hao D, Phon LK, Pawel J (2017) General characteristics of rare earth and radioactive elements in Dong Pao deposit, Lai Chau, Vietnam. Vietnam J Earth Sci 39:14–26

    Google Scholar 

  9. Van HD, Lantoarindriaka A, Piestrzyński A, Trinh PT (2020) Fort-Dauphin beach sands, south Madagascar: Natural radionuclides and mineralogical studies. Vietnam J Earth Sci 42:118–129

    Article  Google Scholar 

  10. IAEA-TRS 492 (1972) The medical uses of ionizing radiation and radioisotopes: report of a Joint IAEA/WHO Expert Committee [meeting held in Geneva from 26 October to 1 November 1971]

  11. Al-Masri MS, Al-Akel B, Nashawani A, Amin Y, Khalifa KH, Al-Ain F (2008) Transfer of 40K, 238U, 210Pb, and 210Po from soil to plant in various locations in south of Syria. J Environ Radioact 99:322–331

    Article  CAS  PubMed  Google Scholar 

  12. Asaduzzaman K, Khandaker MU, Amin YM, Bradley DA, Mahat RH, Nor RM (2014) Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia. J Environ Radioact 135:120–127

    Article  CAS  PubMed  Google Scholar 

  13. Cengiz GB (2019) Transfer factors of 226Ra, 232Th and 40K from soil to pasture-grass in the northeastern of Turkey. J Radioanal Nucl Chem 319:83–89

    Article  CAS  Google Scholar 

  14. Ibikunle SB, Arogunjo AM, Ajayi OS (2019) Characterization of radiation dose and soil-to-plant transfer factor of natural radionuclides in some cities from south-western Nigeria and its effect on man. Scientific African 3:e00062–e00071

    Article  Google Scholar 

  15. Karunakara N, Rao C, Ujwal P, Yashodhara I, Kumara S, Ravi PM (2013) Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. J Environ Radioact 118:80–92

    Article  CAS  PubMed  Google Scholar 

  16. Tuo F, Zhang J, Li W, Yao S, Zhou Q, Li Z (2017) Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. J Environ Radioact 180:59–64

    Article  CAS  PubMed  Google Scholar 

  17. Van HD, Nguyen TD, Peka A, Hegedus M, Csordas A, Kovacs T (2020) Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. J Environ Radioact 223:106416–106422

    Google Scholar 

  18. Van DH, Nguyen TD, Peka A, Bodrogi-Edit T, HegedHus M, Kovacs T (2021) Transfer and bioaccumulation of 210Po from soil to water spinach (Ipomoea aquatica Forrsk.) in Vietnam. J Environ Radioact 231:106554–106560

    Article  CAS  Google Scholar 

  19. Choi YH, Lim KM, Lee MH, Choi GS, Chung KH (1999) Soil-to-plant transfer factors of 137Cs in paddy and upland fields of Korea. Korean J Environ Agricul 18:164–168

    Google Scholar 

  20. Tsukada H, Takeda A, Takahashi T, Hasegawa H, Hisamatsu S, Inaba J (2005) Uptake and distribution of 90Sr and stable Sr in rice plants. J Environ Radioact 81:221–231

    Article  CAS  PubMed  Google Scholar 

  21. Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J Environ Radioact 59:351–363

    Article  CAS  Google Scholar 

  22. Uchida S, Tagami K, Shang ZR, Choi YH (2009) Uptake of radionuclides and stable elements from paddy soil to rice: a review. J Environ Radioact 100:739–745

    Article  CAS  PubMed  Google Scholar 

  23. Uchida S, Tagami K, Hirai I (2007) Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides:(2) Rice collected in Japan. J Nucl Sci Technol 44:779–790

    Article  CAS  Google Scholar 

  24. Pietrzak-Flis Z, Skowrońska-Smolak M (1995) Transfer of 210Pb and 210Po to plants via root system and above-ground interception. Sci Total Environ 162:139–147

    Article  CAS  Google Scholar 

  25. Skwarzec B, Strumińska D, Ulatowski J, Golebiowski M (2001) Determination and distribution of 210Po in tobacco plants from Poland. J Radioanal Nucl Chem 250:319–322

    Article  CAS  Google Scholar 

  26. Van Duong H, Thanh Nguyen D, Peka A, Tóth-Bodrogi E, Kovács T (2020) 210Po in soil and tobacco leaves in Quang Xuong, Vietnam and estimation of annual effective dose to smokers. Radiat Prot Dosi 192:106–112

    Article  CAS  Google Scholar 

  27. Tome FV, Rodríguez MB, Lozano JC (2003) Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. J Environ Radioact 65:161–175

    Article  Google Scholar 

  28. Chakraborty SR, Azim R, Rahman AR, Sarker R (2013) Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong city of Bangladesh. J Phys Sci 24:95–113

    CAS  Google Scholar 

  29. Thabayneh K (2014) Transfer of natural radionuclides from soil to plants and grass in the Western North of West Bank Environment, Palestine. Int J Envi Moni Anal 2:252–258

    Google Scholar 

  30. Lu J, Huang Y, Li F, Wang L, Li S, Hsia Y (2006) The investigation of 137Cs and 90Sr background radiation levels in soil and plant around Tianwan NPP, China. J Environ Radioact 90:89–99

    Article  CAS  PubMed  Google Scholar 

  31. Keser R, Görür FK, Akçay N, Okumuşoǧlu NT (2011) Radionuclide concentration in tea, cabbage, orange, kiwi and soil and lifetime cancer risk due to gamma radioactivity in Rize, Turkey. J Sci Food Agric 91:987–991

    Article  CAS  PubMed  Google Scholar 

  32. Zehringer M (2016) Radioactivity in food: experiences of the food control authority of Basel-City since the Chernobyl accident. Radiat Eff Mater:132–160

  33. Fathabadi N, Salehi AA, Naddafi K, Kardan MR, Yunesian M, Nodehi RN, Deevband MR, Shooshtari MG, Hosseini SS, Karimi M (2017) Radioactivity levels in the mostly local foodstuff consumed by residents of the high level natural radiation areas of Ramsar, Iran. J Environ Radioact 169:209–213

    Article  PubMed  CAS  Google Scholar 

  34. Cetiner MA, Özmen A (1995) Transfer of 137Cs in tea and other foods to man after the chernobyl accident in Turkey. Radiat Phys Chem 46:77–82

    Article  CAS  Google Scholar 

  35. Cook MC, Stukel MJ, Zhang W, Mercier JF, Cooke MW (2016) The determination of Fukushima-derived cesium-134 and cesium-137 in Japanese green tea samples and their distribution subsequent to simulated beverage preparation. J Environ Radioact 153:23–30

    Article  CAS  PubMed  Google Scholar 

  36. Di Gregorio DE, Huck H, Aristegui R, De Lazzari G, Jech A (2004) 137Cs contamination in tea and yerba mate in South America. J Environ Radioact 76:273–281

    Article  PubMed  CAS  Google Scholar 

  37. Fathi VA, Amidi J, Heravi GH (2006) Transfer of 226Ra and 137Cs from tea leaves to drinking tea. Int J Radiat Res 4:49–51

    Google Scholar 

  38. Ikka T, Nishina Y, Kamoshita M, Oya Y, Okuno K, Morita A (2018) Radiocesium uptake through leaf surfaces of tea plants (Camellia sinensis L.). J Environ Radioact 182:70–73

    Article  CAS  PubMed  Google Scholar 

  39. Polar E (2002) The association of 137Cs with various components of tea leaves fermented from Chernobyl contaminated green tea. J Environ Radioact 63:265–270

    Article  CAS  PubMed  Google Scholar 

  40. Steinhauser G (2016) Assessment of the effectiveness of the post-Fukushima food monitoring campaign in the first year after the nuclear accident: a hypothesis. J Environ Radioact 151:36–143

    Article  CAS  Google Scholar 

  41. Topcuoğlu S, Güngör N, Köse A, Varinlioğlu A (1997) Translocation and depuration of 137 Cs in tea plants. J Radioanal Nucl Chem 218:263–266

    Article  Google Scholar 

  42. Tagami K, Uchida S, Shinano T, Pröhl G (2020) Comparisons of effective half-lives of radiocesium in Japanese tea plants after two nuclear accidents, Chernobyl and Fukushima. J Environ Radioact 213:106109–106116

    Article  CAS  PubMed  Google Scholar 

  43. Absar N, Abedin J, Rahman MM, Miah MH, SIddique N, Kamai M, Chowdhury MI, Sulieman AAM, Faruque MRI, Khandaker MU, Bradley DA, Alsubaie A (2021) Radionuclides transfer from soil to tea leaves and estimation of committed effective dose to the Bangladesh Populace. Life 11:282–296

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khoi NV, Lan CH, Huong TL (2015) Vietnam Tea Industry-An Analysis from Value Chain Approach. Int J Manag Value Supply Chains 6:1–15

    Article  Google Scholar 

  45. Duc HH, Minh ND, Cuong PV, Van LB, Leuangtakoun S (2019) Transfer of 238U and 232Th from soils to tea leaves in Luong My Farm, Hoa Binh Province, Vietnam. VNU J Sci Math Phys 35:106–115

    Google Scholar 

  46. Niranjana KS, Viswanath S (2008) Root characteristics of tea [Camellia sinensis (L.) O. Kuntze] and silver oak [Grevillea robusta (A. Cunn)] in a mixed tea plantation at Munnar, Kerala. J Trop Agric 46:25–31

    Google Scholar 

  47. Duong NT, Van Hao D, Duong DT, Phan TT, Xuan HL (2021) Natural radionuclides and assessment of radiological hazards in MuongHum, Lao Cai, Vietnam. Chemosphere 270:128671

  48. Pansu M, Gautheyrou J (2007) Handbook of soil analysis: mineralogical, organic and inorganic methods. Springer Science & Business Media

  49. FAO (2019) Global Soil Laboratory Network GLOSOLAN, Standard operating procedure for soil organic carbon Walkley-Black method Titration and colorimetric method, GLOSOLAN-SOP-02, Version number 1

  50. Pereira CM, Neiverth CA, Maeda S, Guiotoku M, Franciscon L (2011) Complexometric titration with potenciometric indicator to determination of calcium and magnesium in soil extracts. Revista Brasileira de Ciência do Solo 35:1331–1336

    Article  CAS  Google Scholar 

  51. Duong VH, Nguyen TD, Kocsis E, Csordas A, Hegedus M, Kovacs T (2021) Transfer of radionuclides from soil to Acacia auriculiformis trees in high radioactive background areas in North Vietnam. J Environ Radioact 229:106530–106535

    Article  PubMed  CAS  Google Scholar 

  52. Duong VH, Nguyen TD, Hegedus M, Kocsis E, Kovacs T (2021) Study of Well Waters from High-Level Natural Radiation Areas in Northern Vietnam. Int J Environ Res Public Health 18:469–477

    Article  CAS  PubMed Central  Google Scholar 

  53. Curie LA (1976) Limits of qualitative detection and quantitative determination. Internationales Buero 164–166

  54. Helmer RG, Debertin K (1988) Gamma-and X-ray spectrometry with semiconductor detectors. Elsevier Science and Technology

  55. Alloway BJ (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media 22

  56. Maiti SK, Jaiswal S (2008) Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess 136:355–370

    Article  CAS  PubMed  Google Scholar 

  57. Khandaker MU, Zainuddin NK, Bradley DA, Faruque MRI, Sayyed MI, Sulieman A, Jojo PJ (2020) Radiation dose to Malaysian populace via the consumption of roasted ground and instant coffee. Radiat Phys Chem 173:108886–108892

    Article  CAS  Google Scholar 

  58. Ramzaev V, Yonehara H, Hille R, Barkovsky A, Mishine A, Sahoo SK, Kurotaki K, Uchiyama M (2005) Gamma-dose rates from terrestrial and Chernobyl radionuclides inside and outside settlements in the Bryansk Region, Russia in 1996–2003. J Environ Radioact 85:205–227

    Article  PubMed  CAS  Google Scholar 

  59. Belivermiş M (2012) Vertical distributions of 137Cs, 40K, 232Th and 226Ra in soil samples from Istanbul and its environs, Turkey. Radiat Prot Dosim 51:511–521

    Article  CAS  Google Scholar 

  60. Rabesiranana N, Rasolonirina M, Solonjara AF, Ravoson HN, Andriambololona R, Mabit L (2016) Assessment of soil redistribution rates by 137Cs and 210Pb in a typical Malagasy agricultural field. J Environ Radioact 152:112–118

    Article  CAS  PubMed  Google Scholar 

  61. Walling DE, He Q (1999) Improved models for estimating soil erosion rates from cesium-137 measurements. J Environ Qual 28:611–622

    Article  CAS  Google Scholar 

  62. Walling DE, He Q (1997) Use of fallout 137Cs in investigations of overbank sediment deposition on river floodplains. Catena 29:263–282

    Article  CAS  Google Scholar 

  63. Fulajtar E, Mabit L, Renschler CS, Yi ALZ (2017) Use of 137Cs for soil erosion assessment. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  64. Chandrashekara K, Somashekarappa HM (2016) Estimation of radionuclides concentration and average annual committed effective dose due to ingestion for some selected medicinal plants of South India. J Radiat Res Appl Sci 9:68–77

    Article  CAS  Google Scholar 

  65. Prajapati K, Modi HA (2012) The importance of potassium in plant growth–a review. Indian J Plant Sci 1:77–186

    Google Scholar 

  66. Kumar A, Singhai A, Rupali RK, Narayanan JP, Suresh U, Mishra S, Ranade MK (2008) Impact of tropical ecosystem on the migrational behavior of K-40, Cs-137, Th-232, U-238 in perennial plants. Water Air Soil Pollut 192:293–302

    Article  CAS  Google Scholar 

  67. IAEA (2014) The Environmental Behaviour of Radium: Revised Edition, Technical Reports Series No. 476, IAEA, Vienna

  68. FAO (2016) Medium-term prospects for raw materials, horticulture and tropical products. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  69. Shayeb MA, Alharbi T, Baloch MA, Alsamhan OAR (2017) Transfer factors for natural radioactivity into date palm pits. J Environ Radioact 167:75–79

    Article  CAS  PubMed  Google Scholar 

  70. UNSCEAR (2000) Sources, effect and risks of ionising radiation. Report to the General Assembly with Scientific Annexes. United Nations, New York

    Google Scholar 

  71. ICRP (1983) International Commission on Radiological Protection, 1983, Publication 119: Compendium of dose coefficients based on ICRP Publication 60. Ann. ICRP 1983, 41 (Suppl. 42)

Download references

Acknowledgements

Authors would like to thank to prof. Cu X Nguyen who helped us to correct the English and give the useful discussion of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loat Van Bui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, VH., Nguyen Thanh, D., Bui, L.V. et al. Characteristics of radionuclides in soil and tea plant (Camellia sinensis) in Hoa Binh, Vietnam . J Radioanal Nucl Chem 329, 805–814 (2021). https://doi.org/10.1007/s10967-021-07850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07850-5

Keywords

Navigation