Skip to main content
Log in

Fractional factorial design in modeling of polyethyleneimine modified magnetic yeast composites for the removal of uranium with various background ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Polyethyleneimine (PEI) modified magnetic yeast biomaterials composites (MY@SiO2-PEI) were prepared through a two-step solution polymerization method to remove U(VI) from aqueous solutions. The impact of six anions on U(VI) removal efficiency with MY@SiO2-PEI in single- and multi-ion systems was conducted in this article. A 26–2 Fractional factorial design (FFD) and Visual MINTEQ were employed to identify primary or interacting factors and the uranium chemical speciation calculations, respectively. In the single-ion systems, PO43−, humic acids (HA) slightly increased the U(VI) removal efficiency with MY@SiO2-PEI at low pH, whereas the U(VI) removal efficiency was largely reduced with SO42−, CO32−. The factorial effects of the six selected species on U(VI) removal efficiency via FFD in the multi-ion system were in the following sequence: CO32− > Cl > HA > PO43− > SO42− > NO3, and U(VI) removal was affected significantly by the combined of AB (Cl × NO3), BD (NO3 × SO42−).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6

Similar content being viewed by others

References

  1. Wang P, Yin L, Wang J, Xu C, Liang Y, Yao W, Wang X, Yu S, Chen J, Sun Y, Wang X (2017) Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chem Eng J 326:863–874. https://doi.org/10.1016/j.cej.2017.06.034

    Article  CAS  Google Scholar 

  2. Aydin FA, Soylak M (2007) A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples. Talanta 73(1):134–141. https://doi.org/10.1016/j.talanta.2007.03.007

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Z, Pranolo Y, Cheng CY (2016) Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner Eng 89:77–83. https://doi.org/10.1016/j.mineng.2016.01.016

    Article  CAS  Google Scholar 

  4. Li DX, Hu N, Ding DX, Li SM, Li GY, Wang YD (2016) An experimental study on the inhibitory effect of high concentration bicarbonate on the reduction of U(VI) in groundwater by functionalized indigenous microbial communities. J Radioanal Nucl Chem 307(2):1011–1019. https://doi.org/10.1007/s10967-015-4427-4

    Article  CAS  Google Scholar 

  5. Cheira MF, Atia BM, Kouraim MN (2019) Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies. J Radiat Res Appl Sci 10(4):307–319. https://doi.org/10.1016/j.jrras.2017.07.005

    Article  CAS  Google Scholar 

  6. Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, Hou L, Chang X, Shih K (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784. https://doi.org/10.1016/j.jhazmat.2019.120784

    Article  CAS  PubMed  Google Scholar 

  7. Li L, Liao Q, Cao C, Tang S, Ding D, Yuan Y, Cheng B, Dai Z, Ma D, Lu W, Hou S (2019) 4-Sulfonylcalix[6]Arene Modified Fe(3)O(4)@Aspergillus Niger Biosorbents for Effective Removal of Uranium(VI) from Aqueous Solutions. J Nanosci Nanotechnol 19(11):6978–6986. https://doi.org/10.1166/jnn.2019.16602

    Article  CAS  PubMed  Google Scholar 

  8. Deng S, Ting Y-P (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39(10):2167–2177. https://doi.org/10.1016/j.watres.2005.03.033

    Article  CAS  PubMed  Google Scholar 

  9. Xie C, Wei S, Chen D, Lan W, Yan Z, Wang Z (2019) Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(ii) adsorption and detection. RSC Adv 9(41):23474–23483. https://doi.org/10.1039/c9ra03859k

    Article  CAS  Google Scholar 

  10. Pang Y, Zeng G, Tang L, Zhang Y, Liu Y, Lei X, Li Z, Zhang J, Xie G (2011) PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination 281:278–284. https://doi.org/10.1016/j.desal.2011.08.001

    Article  CAS  Google Scholar 

  11. Zhou Y, Ping T, Maitlo I, Wang B, Akram MY, Nie J, Zhu X (2016) Regional selective construction of nano-Au on Fe3O4@SiO2@PEI nanoparticles by photoreduction. Nanotechnology 27(21):215301. https://doi.org/10.1088/0957-4484/27/21/215301

    Article  CAS  PubMed  Google Scholar 

  12. Sun Y, Shao D, Chen C, Yang S, Wang X (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47(17):9904–9910. https://doi.org/10.1021/es401174n

    Article  CAS  PubMed  Google Scholar 

  13. Pang Y, Zeng G, Lin T, Yi Z, Liu Y, Lei X, Zhen L, Zhang J, Xie G (2011) PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination 281:278–284. https://doi.org/10.1016/j.desal.2011.08.001

    Article  CAS  Google Scholar 

  14. Markich SJ (2002) Uranium speciation and bioavailability in aquatic systems: an overview. ScientificWorldJournal 2:707–729. https://doi.org/10.1100/tsw.2002.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan QH, Hao LM, Wang CL, Zheng Z, Liu CL, Wu WS (2014) The adsorption behavior of U(VI) on granite. Environ Sci Process Impacts 16(3):534–541. https://doi.org/10.1039/c3em00324h

    Article  CAS  PubMed  Google Scholar 

  16. Du L, Li S, Li X, Wang P, Huang Z, Tan Z, Liu C, Liao J, Liu N (2017) Effect of humic acid on uranium(VI) retention and transport through quartz columns with varying pH and anion type. J Environ Radioact 177:142–150. https://doi.org/10.1016/j.jenvrad.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  17. Wu S, Li S, Hu J, He J, Wang G, Rong L (2020) Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium(VI). Acta Materiae Compositae Sinica. https://doi.org/10.13801/j.cnki.fhclxb.20201112.002 (In chinese)

    Article  Google Scholar 

  18. Hu XJ, Liu YG, Zeng GM, Wang H, You SH, Hu X, Tan XF, Chen AW, Guo FY (2015) Effects of inorganic electrolyte anions on enrichment of Cu(II) ions with aminated Fe3O4/graphene oxide: Cu(II) speciation prediction and surface charge measurement. Chemosphere 127:35–41. https://doi.org/10.1016/j.chemosphere.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  19. Tanboonchuy V, Grisdanurak N, Liao C-H (2012) Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. J Hazard Mater 205–206:40–46. https://doi.org/10.1016/j.jhazmat.2011.11.090

    Article  CAS  PubMed  Google Scholar 

  20. Bayramoglu G, Ar Ica MY (2019) Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem Eng Res Des 147:146–159. https://doi.org/10.1016/j.cherd.2019.04.039

    Article  CAS  Google Scholar 

  21. Ren X, Wang S, Yang S, Li J (2009) Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite. J Radioanal Nucl Chem 283(1):253–259. https://doi.org/10.1007/s10967-009-0323-0

    Article  CAS  Google Scholar 

  22. Segad M, Jönsson B, kesson T, Cabane B, (2010) Ca/Na montmorillonite: structure, forces and swelling properties. Langmuir the Acs J Surfaces Colloids 26(8):5782–5790. https://doi.org/10.1021/la9036293

    Article  CAS  Google Scholar 

  23. Cumberland SA, Douglas G, Grice K, Moreau JW (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci Rev 159:160–185. https://doi.org/10.1016/j.earscirev.2016.05.010

    Article  CAS  Google Scholar 

  24. Mibus J, Sachs S, Pfingsten W, Nebelung C, Bernhard G (2007) Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand: a laboratory column study. J Contam Hydrol 89(3–4):199–217. https://doi.org/10.1016/j.jconhyd.2006.08.005

    Article  CAS  PubMed  Google Scholar 

  25. Moreau, John, W., Douglas, Grant, Grice, Kliti, Cumberland, Susan, A. (2016) Uranium mobility in organic matter-rich sediments: A review of geological and geochemical processes. Earth Sci Rev 159:160-185. https://doi.org/10.1016/j.earscirev.2016.05.010

  26. Chen C, Yang X, Wei J, Tan X, Wang X (2013) Eu(III) uptake on rectorite in the presence of humic acid: a macroscopic and spectroscopic study. J Colloid Interface Sci 393:249–256. https://doi.org/10.1016/j.jcis.2012.10.032

    Article  CAS  PubMed  Google Scholar 

  27. Othman SH, Ezz Eldin AA, Borai EH, Mahmoud WH (2017) Speciation modeling and sorption mechanism for decontamination of naturally occurring radionuclide from sulfuric acid liquor by anion exchange process. J Radioanal Nucl Chem 314(2):1063–1073. https://doi.org/10.1007/s10967-017-5463-z

    Article  CAS  Google Scholar 

  28. Guillaumont R, Fanghänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux. Elsevier, France

  29. Stanley DM, Wilkin RT (2019) Solution equilibria of uranyl minerals: Role of the common groundwater ions calcium and carbonate. J Hazard Mater 377:315–320. https://doi.org/10.1016/j.jhazmat.2019.05.101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krestou A, Xenidis A, Panias D (2004) Mechanism of aqueous uranium(VI) uptake by hydroxyapatite. Miner Eng 17(3):373–381. https://doi.org/10.1016/j.mineng.2003.11.019

    Article  CAS  Google Scholar 

  31. Cheng BT, Roden MO, Zhuang EE (2004) Effects of phosphate on uranium(VI) adsorption to goethite-coated sand. Environ Ence Technol 38(22):6059. https://doi.org/10.1021/es040388o

    Article  CAS  Google Scholar 

  32. Li J, Chen C, Zhang R, Wang X (2015) Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Sci China Chem 59(1):150–158. https://doi.org/10.1007/s11426-015-5452-4

    Article  CAS  Google Scholar 

  33. Buck EC, Brown NR, Dietz NL (1996) Contaminant uranium phases and leaching at the fernald site in Ohio. Environmental Ence & Technology 30(1):81–88. https://doi.org/10.1021/es9500825

    Article  CAS  Google Scholar 

  34. Beldjoudi S, Kouachi K, Bourouina-Bacha S, Lafaye G, Soualah A (2020) Kinetic study of methyl orange decolorization by the Fenton process based on fractional factorial design. React Kinet Mech Catal 130(2):1123–1140. https://doi.org/10.1007/s11144-020-01803-x

    Article  CAS  Google Scholar 

  35. Ruiz Espejo M (2006) Design of experiments for engineers and scientists. Technometrics 48(2):304–305. https://doi.org/10.1198/tech.2006.s381

    Article  Google Scholar 

  36. Lim JH, Lee JS (2008) A statistical design and analysis illustrating the interactions between key experimental factors for the synthesis of silver nanoparticles. Colloids Surf, A 322(1–3):155–163. https://doi.org/10.1016/j.colsurfa.2008.03.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (11475080, 51904155) and Hengyang’s Science and technology planning projects (2018KJ130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 959 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wu, S., Zhang, K. et al. Fractional factorial design in modeling of polyethyleneimine modified magnetic yeast composites for the removal of uranium with various background ions. J Radioanal Nucl Chem 329, 815–827 (2021). https://doi.org/10.1007/s10967-021-07846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07846-1

Keywords

Navigation