Skip to main content
Log in

Experimental characterization of alpha spectrometer for optimization of operational parameters affecting energy resolution and detection efficiency

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The operational parameters of an alpha spectrometer equipped with a planar silicon semiconductor detector were characterized by measuring a mixed alpha source. The full width at half maximum (FWHM) decreased with increasing conversion gain (CG) and sample-to-detector distance (SDD) and was constant beyond an SDD of 21 mm. Although the FWHM was minimum at 4096 CG, peak-shape analysis showed that 1024 CG and 2048 CG are more appropriate than 4096 CG for alpha spectrum analysis. In practical measurement with SDD less than 5 mm, a sample thickness difference of 1 mm caused a relative error in detection efficiency of 11 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vajda N, Kim C-K (2010) Determination of 241Am isotope: a review of analytical methodology. J Radioanal Nucl Chem 284(2):341–366. doi:https://doi.org/10.1007/s10967-010-0475-y

    Article  CAS  Google Scholar 

  2. Krmpotić M, Rožmarić M, Benedik L (2017) Evaluation of several electrolyte mixture-cathode material combinations in electrodeposition of americium radioisotopes for alpha-spectrometric measurements. Appl Radiat Isot 128:158–164. doi:https://doi.org/10.1016/j.apradiso.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  3. Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radional Nucl Chem 283(1):203–223. doi:https://doi.org/10.1007/s10967-009-0342-x

    Article  CAS  Google Scholar 

  4. Sill CW (1987) Precipitation of actinides as fluorides or hydroxides for high-resolution alpha spectrometry. Nuclear Chemical Waste Management 7(3–4):201–215. doi:

    Article  CAS  Google Scholar 

  5. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of analytical methodology. J Environ Radioact 106:98–119. doi:https://doi.org/10.1016/j.jenvrad.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  6. Jobbágy V, Chmielewska I, Kovács T, Chałupnik S (2009) Uranium determination in water samples with elevated salinity from Southern Poland by micro coprecipitation using alpha spectrometry. Microchem J 93(2):200–205. doi:https://doi.org/10.1016/j.microc.2009.07.006

    Article  CAS  Google Scholar 

  7. Pöllänen R, Peräjärvi K, Siiskonen T, Turunen J (2013) In-situ alpha spectrometry from air filters at ambient air pressure. Radiat Measur 53:65–70. https://doi.org/10.1016/j.radmeas.2013.01.008

    Article  CAS  Google Scholar 

  8. Knoll GF (2000) Radiation Detection and Measurement, Third edn. edn. Wiley, New York

    Google Scholar 

  9. Vajda N, Pöllänen R, Martin P, Kim CK (2012) Alpha spectrometry. In: L’Annunziata MF (ed) Handbook of radioactivity analysis, 3rd edn. Academic Press, San Diego, pp 493–573

    Google Scholar 

  10. Phong THN, Van TN, Le Cong H (2018) Efficiency response of an aged PIPS detector used in high-resolution alpha-particle spectrometry. Nucl Instrum Methods Phys Res A 908:128–135. doi:https://doi.org/10.1016/j.nima.2018.08.044

    Article  CAS  Google Scholar 

  11. Steinbauer E, Bortels G, Bauer P, Biersack J, Burger P, Ahmad I (1994) A survey of the physical processes which determine the response function of silicon detectors to alpha particles. Nucl Instrum Methods Phys Res A 339(1–2):102–108. doi:https://doi.org/10.1016/0168-9002(94)91787-6

    Article  CAS  Google Scholar 

  12. Canberra (2011) Application Note. Considerations for Choosing an Alpha Spectroscopy PIPS Detector

  13. Calin M, Saizu M, Radulescu I (2013) Assessments on energy and efficiency calibration of an alpha spectrometry system using standard sources. J Radioanal Nucl Chem 298(1):55–60. doi:https://doi.org/10.1007/s10967-013-2474-2

    Article  CAS  Google Scholar 

  14. Calin MR, Saizu MA, Radulescu I, Druker AE (2013) Experimental characterization of a multi-chamber alpha spectrometry system using standard actinide sources. Nucl Instrum Methods Phys Res A 705:13–16. doi:https://doi.org/10.1016/j.nima.2012.12.070

    Article  CAS  Google Scholar 

  15. Galiano E, Rodrigues M (2006) A comparison of different analytical methods of determining the solid angle of a circular coaxial source–detector system. Appl Radiat Isot 64(4):497–501. doi:https://doi.org/10.1016/j.apradiso.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  16. Ruby L (1994) Further comments on the geometrical efficiency of a parallel-disk source and detector system. Nucl Instrum Methods Phys Res A 337(2–3):531–533. doi:https://doi.org/10.1016/0168-9002(94)91124-X

    Article  Google Scholar 

  17. Pommé S (2004) A complete series expansion of Ruby’s solid-angle formula. Nucl Instrum Methods Phys Res A 531(3):616–620. doi:https://doi.org/10.1016/j.nima.2004.05.088

    Article  CAS  Google Scholar 

  18. Aguiar JC, Galiano E (2004) Theoretical estimates of the solid angle subtended by a dual diaphragm–detector assembly for alpha sources. Appl Radiat Isot 61(6):1349–1351. doi:https://doi.org/10.1016/j.apradiso.2004.03.061

    Article  CAS  PubMed  Google Scholar 

  19. Siiskonen T, Pöllänen R (2005) Advanced simulation code for alpha spectrometry. Nucl Instrum Methods Phys Res A 550(1–2):425–434. doi:https://doi.org/10.1016/j.nima.2005.05.045

    Article  CAS  Google Scholar 

  20. Díaz NC, Sánchez AM, de la Torre Pérez J (2011) SOLANG: A user-friendly code to calculate the geometry factor using Monte Carlo simulations. Application to alpha-particle spectrometry. Appl Radiat Isot 69(5):822–824. doi:https://doi.org/10.1016/j.apradiso.2011.01.038

    Article  CAS  Google Scholar 

  21. Canberra (2006) Genie™ 2000 Spectroscopy Software Operations Manual

  22. Atomic and Nuclear data, Laboratoire National Henri Becquerel. http://www.lnhb.fr/nuclear-data/module-lara/. Accessed 24 May 2021

  23. Marzo GA (2016) A comparison of different peak shapes for deconvolution of alpha-particle spectra. Nucl Instrum Methods Phys Res A 832:191–201. doi:https://doi.org/10.1016/j.nima.2016.06.111

    Article  CAS  Google Scholar 

  24. Lin Z, Berne A, Cummings B, Filliben JJ, Inn KGW (2002) Competence of alpha spectrometry analysis algorithms used to resolve the 241Am and 243Am alpha peak overlap. Appl Radiat Isot 56(1–2):57–63. doi:https://doi.org/10.1016/S0969-8043(01)00167-1

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton TF, Smith JD (1986) Improved alpha energy resolution for the determination of polonium isotopes by alpha-spectrometry. Appl Radiat Isot 37(7):628–630. doi:https://doi.org/10.1016/0883-2889(86)90084-5

    Article  CAS  Google Scholar 

  26. Morton TH (2017) Isotopic labelling in mass spectrometry. In: Lindon JC, Tranter GE, Koppenaal DW (eds) Encyclopedia of Spectroscopy and Spectrometry, vol 1, 3rd edn. Academic Press, New York, pp 503–506

    Google Scholar 

  27. Becker JS (2012) Inorganic mass spectrometry of radionuclides. In: L’Annunziata MF (ed) Handbook of Radioactivity Analysis, 3rd edn. Academic Press, San Diego, pp 833–870

    Chapter  Google Scholar 

  28. Sung SH, Kim HR (2020) Optimization of airborne alpha beta detection system modeling using MCNP simulation. Nucl Eng Technol 52(4):841–845. doi:https://doi.org/10.1016/j.net.2019.10.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Korea Atomic Energy Research Institute (KAERI) R&D Program of the Ministry of Science and ICT of Korea (521510-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Seok Chae.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Park, Jy., Lee, HW. et al. Experimental characterization of alpha spectrometer for optimization of operational parameters affecting energy resolution and detection efficiency. J Radioanal Nucl Chem 329, 959–967 (2021). https://doi.org/10.1007/s10967-021-07821-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07821-w

Keywords

Navigation