Skip to main content

Research on the Performance of CZT Detector in Alpha Particle Detection

  • Chapter
  • First Online:
High-Z Materials for X-ray Detection
  • 422 Accesses

Abstract

Good energy resolution, high resistivity, and room temperature operation make CZT a substitute candidate for traditional semiconductors. Despite many advantages and the potential to be applied in α surface contamination monitors and radioactivity meters, CZT is rarely utilized in alpha particle detection. In this chapter, an alpha particle detecting system we designed and built is introduced with its performance. The response to signal, electronic noise, energy resolution, and electron mobility-lifetime product of the system are measured in experiment. The properties of the interaction between CZT detector and alpha particle are discussed depending on the simulation results from Geant4, while the characterization of charge carrier transportation is analyzed with COMSOL, a finite element methods(FEM) software. A simulated spectrum is reconstructed, matching the experimental one well, and the approach to creating it is illustrated. Besides, the effect of CZT crystal’s Cr coating on energy resolution is also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, M. T. (2011). The present status and develop current of α particle detect instrument. Nuclear Electronics & Detection Technology, 31(11), 1198–1201. (in Chinese).

    Google Scholar 

  2. Morishita, Y., Yamamoto, S., Izaki, K., et al. (2014). Performance comparison of scintillators for alpha particle detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 764, 383–386.

    Article  Google Scholar 

  3. Venos, D., Srnka, D., Slesinger, J., et al. (1995). Performance of HPGe detectors in the temperature region 277 K[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 365(2–3), 419–423.

    Article  Google Scholar 

  4. Kotina, I. M., Derbin, A. V., Morozov, V. F., et al. (1992). Detection of charged particles using heterostructures of crystalline p-silicon and hydrogenated amorphous carbon[J]. Diamond and Related Materials, 1(5–6), 623–625.

    Article  Google Scholar 

  5. He, Y., Liu, Z., McCall, K. M., et al. (2019). Perovskite CsPbBr3 single crystal detector for alpha particle spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 922, 217–221.

    Article  Google Scholar 

  6. Xu, Q., Mulligan, P., Wang, J., et al. (2017). Bulk GaN alpha-particle detector with large depletion region and improved energy resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 849, 11–15.

    Article  Google Scholar 

  7. Amman, M. S., Lee, J. S., & Luke, P. N. (2001). Alpha particle response characterization of CdZnTe[C]. Hard X-Ray and Gamma-Ray Detector Physics III. International Society for Optics and Photonics, 4507, 1–11.

    Google Scholar 

  8. Wang X. Principle and experimental characteristics of pixellated CdZnTe detector for nuclear radiation, Ph.D. Thesis, Chongqing University; 2013. (in Chinese).

    Google Scholar 

  9. Hecht, K. (1932). Zum Mechanismus des lichtelektrischen Primrstromes in isolierenden Kristallen[J]. Zeitschrift fr Physik, 77(3–4), 235–245. (in German).

    Article  Google Scholar 

  10. 王莹, 王凯, 曲延涛, 马吉增. 平面型CZT探测器对中低能γ射线的响应[J]. 中国原子能科学研究院年报. 2007(00):356. (in Chinese).

    Google Scholar 

  11. Shockley, W. (1938). Currents to conductors induced by a moving point charge. Journal of Applied Physics, 9, 635.

    Article  Google Scholar 

  12. Ramo S. Currents induced by electron motion. Proceedings of the I.R.E. 1939, p. 584.

    Google Scholar 

  13. He, Z. (2001). Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 463(1–2), 250–267.

    Article  Google Scholar 

  14. Liu, E. K., Zhu, B. S., & Luo, J. S. (2017). The physics of semiconductors (7th ed.). Publishing House of Electronics Industry.

    Google Scholar 

  15. Michaelson, H. B. (1977). The work function of the elements and its periodicity[J]. Journal of Applied Physics, 48(11), 4729–4733.

    Article  Google Scholar 

  16. Liang, X. Y., Min, J. H., Chen, J., et al. (2012). Metal/semiconductor contacts for schottky and photoconductive CdZnTe detector[J]. Physics Procedia, 32, 545–550.

    Article  Google Scholar 

  17. Nemirovsky, Y., Ruzin, A., Asa, G., et al. (1997). Study of contacts to CdZnTe radiation detectors[J]. Journal of Electronic Materials, 26(6), 756–764.

    Article  Google Scholar 

  18. Uxa, S., Grill, R., & Belas, E. (2013). Evaluation of the mobility-lifetime product in CdTe and CdZnTe detectors by the transient-current technique[J]. Journal of Applied Physics, 114(9), 094511. https://doi.org/10.1063/1.4819891

    Article  Google Scholar 

  19. Agostinelli, S., Allison, J., Amako, K., et al. (2003). GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303.

    Article  Google Scholar 

  20. Kolstein, M., Ario, G., Chmeissani, M., et al. (2014). Simulation of charge transport in pixelated CdTe[J]. Journal of Instrumentation, 9(12), C12027.

    Article  Google Scholar 

  21. Prettyman, T. H. (1999). Method for mapping charge pulses in semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 422(1–3), 232–237.

    Article  Google Scholar 

  22. Bell, G. I., & Glasstone, S. (1970). Nuclear reactor theory[R]. US Atomic Energy Commission.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, Y., Wei, L. (2023). Research on the Performance of CZT Detector in Alpha Particle Detection. In: Abbene, L., Iniewski, K.(. (eds) High-Z Materials for X-ray Detection. Springer, Cham. https://doi.org/10.1007/978-3-031-20955-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20955-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20954-3

  • Online ISBN: 978-3-031-20955-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics