Skip to main content
Log in

Analysis of carbon in archaeological glass and pottery by low energy deuteron activation technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Carbon in archaeological glass and pottery is determined in a simple and elegant way by deuteron activation based on C-12(d,n)N-13 nuclear reaction. The method is rapid, non-destructive and carbon result is obtained along with Na, Mg, Al and Cl in a single irradiation. In the wood-fired Roman furnaces, carbon entered the glass melt probably through fumes and/or alkali plant-ash flux. Carbon is found in the range of 1300 to 4400 (µg/g) in glass. The theoretical detection limit of 5 µg/g is difficult to achieve because of higher carbon blank from the environment/atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nozaki T, Yatsurugi Y, Akiyama N (1970) Charged particle activation analysis for carbon, nitrogen and oxygen in semiconductor silicon. J Radioanal Nucl Chem 4:87–98

    Article  CAS  Google Scholar 

  2. Petri H, Sastri CS (1975) Oxygen determination in aluminum by Helium-3 activation analysis, Fresenius Z. Anal Chem 277:25–28

    Article  CAS  Google Scholar 

  3. Giovagnoli A, Valladon M, Koemmerer C, Blondiaux G, Debrun JL (1979) Etude de la reaction 14N (d, n)15O a basse energie et application au dosage de l`azote dans le zirconium. Anal Chim Acta 109:411–418

    Article  CAS  Google Scholar 

  4. Engelmann Ch (1980) Utilisation des accelerateurs en analyse par activation, notamment pour la characterisation des materiaux purs. J Radioanal Chem 58:29–47

    Article  CAS  Google Scholar 

  5. Sastri CS, Caletka R, Krivan V (1981) Simultaneous determination of boron and lithium by charged particle activation analysis. Anal Chem 53:765–770

    Article  CAS  Google Scholar 

  6. Sastri CS, Blondiaux G, Hoffmann P, Ortner HM, Petri H (2000) Oxygen determination in calcium fluoride by deuteron activation analysis. Fresenius J Anal Chem 366:218–220

    Article  CAS  Google Scholar 

  7. Albert Ph, Chaudron G, Süe P (1953) Microdosage par voie chimique du carbone dans le fer irradie par les deutons. Bull Soc Chim Fr 20:97–102

    Google Scholar 

  8. Vandecasteele C, Strijckmans K, Engelmann Ch, Ortner HM (1981) Determination of traces of carbon, nitrogen and oxygen in molybdenum and tungsten. Talanta 28:19–23

    Article  CAS  Google Scholar 

  9. Misdaq MA, Blondiaux G, Bordes N, Giovagnoli A, Valladon M, Wei IC, Hage Ali M, Maggiore CJ, Debrun JL (1987) Recent progress in the study of semiconductors using charged particle activation. J Radioanal Nucl Chem 110:441–449

    Article  CAS  Google Scholar 

  10. Sastri CS, Blondiaux G, Petri H, Michulitz M (2000) Stoichiometric determination of carbon in ceramic materials by low energy deuteron activation analysis. J Radioanal Nucl Chem 244:457–462

    Article  CAS  Google Scholar 

  11. Albert Ph, Blondiaux G, Debrun JL, Giovagnoli J, Valladon M (1987) Activation cross-sections for elements from lithium to Sulphur. Handbook on Nuclear Activation data, Technical Report Series no. 273, IAEA, Vienna

  12. Segebade C, Weise HP, Lutz GJ (1987) Photon activation analysis. Walter de Gruyter, Berlin

    Book  Google Scholar 

  13. Pierce TB, Peck PF, Henry WM (1965) The rapid determination of carbon in steels by measurement of prompt radiation emitted during deuteron bombardment. Analyst 90:339–345

    Article  CAS  Google Scholar 

  14. Sastri CS, Sauvage T, Blondiaux G, Wendling O, Bellamy A, Humburg C (2020) Analysis of Na, Mg, Al and Cl in archaeological glass and pottery: comparison of PIGE with low energy deuteron activation analysis. J Radioanal and Nucl Chem 324:159–167

    Article  CAS  Google Scholar 

  15. Sastri CS, Blondiaux G, Möller P, Petri H (1996) Determination of chlorine in metals and ceramic materials by low energy deuteron activation analysis. Nucl Inst Methods Phys Res B 119:425–428

    Article  CAS  Google Scholar 

  16. Sastri CS, Blondiaux G, Petri H (1997) Trace determination of carbon, sodium, magnesium and aluminum in metals and ceramic materials by low energy deuteron activation analysis. Nucl Inst Methods Phys Res B 124:558–566

    Article  CAS  Google Scholar 

  17. Schibille N, Sterrett-Krause A, Freestone IC (2017) Glass groups, glass supply and recycling in late roman carthage. Archaeol Anthropol Sci 9:1223–1241

    Article  Google Scholar 

  18. Jackson CM, Paynter S, Nenna MD, Degryse P (2018) Glassmaking using natron from el-Barnugi (Egypt) Pliny and the Roman glass industry. Archaeol Anthropol Sci. 10:1179–1191

    Article  Google Scholar 

  19. Tite MS, Shortland A, Maniatis Y, Kavoussanaki D, Harris SA (2006) The composition of the soda-rich and mixed alkali plant ashes used in the production of glass. J Archaeological Science 33:1284–1292

    Article  Google Scholar 

  20. Paynter S (2008) Experiments in the reconstruction of Roman wood-fired glassworking furnaces: Waste products and their formation processes. J Glass Stud 50:271–290

    Google Scholar 

  21. Paynter S, Jackson CM (2018) Mellow yellow: an experiment in amber. J Arch Sci Reports 22:568–576

    Google Scholar 

  22. Hedges REM, Tiemei C, Housley R (1992) Results and methods in the radiocarbon dating of pottery. Radiocarbon 34:906–915

    Article  Google Scholar 

  23. Delque Kolic E (1995) Direct radiocarbon dating of pottery: selective heat treatment to retrieve smoke-derived carbon. Radiocarbon 37:275–284

    Article  CAS  Google Scholar 

  24. Taylor M, Hill D (2008) Experiments in the reconstruction of Roman wood-fired glassworking furnaces. J Glass Stud 50:249–270

    Google Scholar 

  25. Winchester JW, Bottino ML (1961) Determination of carbon, oxygen and silicon in solids by activation analysis with 15 MeV deuterons. Anal Chem 33:472–473

    Article  CAS  Google Scholar 

  26. Chu SYF, Ekström LP, Firestone RB (1999) The Lund/LBNL nuclear data search. Version 2.0, http://www.nucleardata.nuclear.lu.se/toi/

  27. Ricci E, Hahn RL (1967) Sensitivities for activation analysis of 15 light elements with 18 MeV Helium-3 particles. Anal Chem 39:794–797

    Article  CAS  Google Scholar 

  28. Ziegler JF, Ziegler MD, Biersack JP (2008) Version SRIM-2008.04, http://www.srim.org

  29. Sastri CS, Banerjee A, Sauvage T, Courtois B, Duval F (2016) Application of 12 MeV proton activation to the analysis of archaeological specimens. J Radioanal Nucl Chem 308:241–249

    Article  CAS  Google Scholar 

  30. Sastri CS, Duval F, Sauvage T, Banerjee A, Humburg C (2020) Analysis of Roman and other archaeological glasses by 12 MeV proton activation analysis. Nucl Instru Meth Phys Res B 467:152–155

    Article  CAS  Google Scholar 

  31. De Soete D, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley-Interscience, London

    Google Scholar 

  32. Devulder V, Degryse P (2014) in “Glass making in the Greco-Roman world – Results of the ARCHGLASS project.” Leuven University Press, Leuven, Belgium

    Google Scholar 

  33. Kohn A, Barrandon JN, Debrun JL, Valladon M, Vialatte B (1974) Radiochemical separation of fluorine by adsorption on hafnium dioxide: application to the determination of oxygen by activation analysis with charged particles. Anal Chem 46:1737–1741

    Article  CAS  Google Scholar 

  34. Koemmerer C (1982) Etude sur l`incorporation du carbone et de l`oxygene au cours de l`elaboration de GaAs, en utilisant l`analyse par activation au moyen de particules chargees de basse energie, Ph.D Thesis, University of Orleans, France

  35. Vicente ED, Vicente A, Nunes T, Calvo A, del Blanco-Alegre C, Oduber E, Castro A, Fraile R, Amato F, Alves C (2019) Household dust: Loadings and PM10 –bound plasticizers and polycyclic aromatic hydrocarbons. Atmosphere 10(12):785

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaturvedula S. Sastri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastri, C.S., Sauvage, T., Blondiaux, G. et al. Analysis of carbon in archaeological glass and pottery by low energy deuteron activation technique. J Radioanal Nucl Chem 329, 889–897 (2021). https://doi.org/10.1007/s10967-021-07820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07820-x

Keywords

Navigation