Skip to main content
Log in

Analysis of Na, Mg, Al and Cl in archaeological glass and pottery: comparison of PIGE with low energy deuteron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Na, Mg, Al and Cl in Roman glasses and pottery were analyzed by PIGE with 2.5 MeV protons and 2.0 MeV deuteron activation analysis. Both methods are simple and rapid. For Na, Mg and Al in glasses, the detection limits with PIGE and deuteron activation are: 40, 800, 300 (µg/g) and 120, 110, 100 (µg/g), respectively. PIGE is not suitable for trace analysis of chlorine. The detection limit of Cl is 500 µg/g for 2 MeV deuteron activation. PIGE is a sensitive method for Na analysis. At low concentrations of Mg and Al, deuteron activation with its higher sensitivity and improved photopeak-to-background ratios, gives more precise and accurate results than PIGE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deconninck G (1978) Introduction to radioanalytical physics. Elsevier, Amsterdam

    Google Scholar 

  2. Giles IS (1978) Elemental analysis by alpha-induced prompt gamma-ray emission. PhD thesis, University of Cape Town, South Africa

  3. Kenny MJ, Bird JR, Clayton E (1980) Proton induced gamma-ray yields. Nucl Instrum Methods Phys Res 168:115–120

    Article  CAS  Google Scholar 

  4. Gihwala D (1982) Analytical application of proton-induced prompt photon spectrometry. Ph.D. thesis, University of Cape Town, South Africa

  5. Sastri CS, Schelhaas KP (1985) Analytical use of alpha-source induced Gamma-ray emission, Fresenius. J Anal Chem 321:739–747

    CAS  Google Scholar 

  6. Elekes Z, Kiss AZ, Biron I, Calligaro T, Salomon J (2000) Thick target γ-ray yields for light elements measured in the deuteron energy interval of 0.7–3.4 MeV. Nucl Instrum Methods Phys Res B 168:305–320

    Article  CAS  Google Scholar 

  7. Sastri CS, Iyengar V, Blondiaux G, Tessier Y, Petri H, Hoffmann P, Aras NK, Zaichick V, Ortner HM (2001) Fluorine determination in human and animal bones by particle-induced gamma-ray emission, Fresenius. J Anal Chem 370:924–929

    CAS  Google Scholar 

  8. Petrone P, Graziano V, Sastri C, Sauvage T, Mezzasalma M, Paternoster M, Guarino F (2019) Dental fluorosis in the Vesuvius towns in AD 79: a multidisciplinary approach. Ann Hum Biol 46:388–392

    Article  Google Scholar 

  9. Gomez-Tubio B, Ontalba-Salamanca MA, Ortega-Feliu I, Respaldiza MA (2006) PIXE-PIGE analysis of late roman glass fragments. Nucl Instrum Methods B 249:616–621

    Article  CAS  Google Scholar 

  10. Smit Z, Milavec T, Fajfar H, Rehren Th, Lankton JW, Gratuze B (2013) Analysis of glass from the post-Roman settlement Tonovcov grad (Slovenia) by PIXE-PIGE and LA-ICP-MS. Nucl Instrum Methods Phys Res B 311:53–59

    Article  CAS  Google Scholar 

  11. Dasari KB, Chhillar S, Acharya R, Ray DK, Behera A, Lakhmana Das N, Pujari PK (2014) Simultaneous determination of Si, Al and Na concentrations by particle induced gamma-ray emission and applications to reference materials and ceramic archaeological artifacts. Nucl Instrum Methods Phys Res B 339:37–41

    Article  CAS  Google Scholar 

  12. Speakman RJ, Little NC, Creel D, Miller MR, Inanez JG (2011) Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. J Archaeol Sci 38:3483–3496

    Article  Google Scholar 

  13. Hoffmann P, Vetter G (1990) Analytical examination of mortars from the medieval derelict village Holzheim. Fresenius J Anal Chem 338:133–137

    Article  CAS  Google Scholar 

  14. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526

    Article  CAS  Google Scholar 

  15. Seaborg GT, Livingood JJ (1938) Artificial radioactivity as a test for minute traces of elements. J Am Chem Soc 60:1784–1786

    Article  CAS  Google Scholar 

  16. Albert Ph, Chaudron G, Süe P (1953) Microdosage par voie chimique du carbonne dans le fer irradie par les deutons. Bull Soc Chim Fr 20:97–102

    Google Scholar 

  17. Albert Ph, Blondiaux G, Debrun JL, Giovagnoli J, Valladon M, (1987) Activation cross-sections for elements from lithium to Sulphur, Handbook on Nuclear Activation data, Technical Report Series no. 273, IAEA, Vienna

  18. Sastri CS, Blondiaux G, Petri H, Michulitz M (2000) Stoichiometric determination of carbon in ceramic materials by low energy deuteron activation analysis. J Radioanal Nucl Chem 244:457–462

    Article  CAS  Google Scholar 

  19. Misdaq MA, Blondiaux G, Bordes N, Giovagnoli A, Valladon M, Wei IC, Hage Ali M, Maggiore CJ, Debrun JL (1987) Recent progress in the study of semiconductors using charged particle activation. J Radioanal Nucl Chem 110:441–449

    Article  CAS  Google Scholar 

  20. Giovagnoli A, Valladon M, Koemmerer C, Blondiaux G, Debrun JL (1979) Etude de la reaction N-14 (d,n)O-15 a basse energie et application au dosage de làzote dans le zirconium. Anal Chim Acta 109:411–418

    Article  CAS  Google Scholar 

  21. Sastri CS, Blondiaux G, Hoffmann P, Ortner HM, Petri H (2000) Oxygen determination in calcium fluoride by deuteron activation analysis. Fresenius J Anal Chem 366:218–220

    Article  CAS  Google Scholar 

  22. Sastri CS, Blondiaux G, Möller P, Petri H (1996) Determination of chlorine in metals and ceramic materials by low energy deuteron activation analysis. Nucl Instrum Methods Phys Res B 119:425–428

    Article  CAS  Google Scholar 

  23. Sastri CS, Blondiaux G, Petri H (1997) Trace determination of carbon, sodium, magnesium and aluminum in metals and ceramic materials by low energy deuteron activation analysis. Nucl Instrum Methods Phys Res B 124:558–566

    Article  CAS  Google Scholar 

  24. Peisach M, Gihwala G (1986) Radioactive interference effects in deuteron—induced PIPPS. Radiochim Acta 40:21–25

    CAS  Google Scholar 

  25. Ricci E (1972) Charged particle activation analysis. In: Lenihan JMA et al (eds) Advances in activation analysis. Academic Press, Cambridge

    Google Scholar 

  26. Vandecasteele C (1988) Activation analysis with charged particles. Ellis Horwood Limited, Chichester

    Google Scholar 

  27. Chu SYF, Ekström LP, Firestone RB (1999) The Lund/LBNL nuclear data search. Version 2.0. http://www.nucleardata.nuclear.lu.se/toi/

  28. Ricci E, Hahn RL (1967) Sensitivities for activation analysis of 15 light elements with 18 MeV Helium-3 particles. Anal Chem 39:794–797

    Article  CAS  Google Scholar 

  29. Ziegler JF, Ziegler MD, Biersack JP (2008) Version SRIM-2008.04. http://www.srim.org

  30. Sastri CS, Banerjee A, Sauvage T, Courtois B, Duval F (2016) Application of 12 MeV proton activation to the analysis of archaeological specimens. J Radioanal Nucl Chem 308:241–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaturvedula S. Sastri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastri, C.S., Sauvage, T., Blondiaux, G. et al. Analysis of Na, Mg, Al and Cl in archaeological glass and pottery: comparison of PIGE with low energy deuteron activation analysis. J Radioanal Nucl Chem 324, 159–167 (2020). https://doi.org/10.1007/s10967-020-07035-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07035-6

Keywords

Navigation