Skip to main content
Log in

A self-assembled supramolecular organic material for selective extraction of uranium from aqueous solution

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A supramolecular organic material MA-IPA containing melamine and isophthalic acid was prepared by low-temperature hydrothermal reaction, with an attempt to develop a functional sorbent with high-perform ability for the separation of uranium from aqueous solution. The obtained supramolecular material shows good uranium affinity, which may be due to the large amount of nitrogen and oxygen donors. The effects of initial pH, contact time, initial uranium concentration and temperature on the sorption behavior of uranium by MA-IPA were systematically explored. The maximum sorption capacity of uranium on MA-IPA is found to be 317 mg g−1 at pH 4.5, while the selectivity is higher than 56% over other 10 co-existing metal cations. The significance outcomes in this work can expand the application of supramolecular materials, especially in the separation of radionuclides and other metal cation from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

Availability of data and materials

All data analyzed during this study are included in this published article and its supplementary information files.

References

  1. Luo W, Xiao G, Tian F, Richardson JJ, Wang Y, Zhou J, Guo J, Liao X, Shi B (2019) Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ Sci 12(2):607–614. https://doi.org/10.1039/c8ee01438h

    Article  CAS  Google Scholar 

  2. Liu C, Hsu P-C, Xie J, Zhao J, Wu T, Wang H, Liu W, Zhang J, Chu S, Cui Y (2017) A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat Energy 2:17007. https://doi.org/10.1038/nenergy.2017.7

    Article  CAS  Google Scholar 

  3. Feng M, Sarma D, Qi X, Du K, Huang X, Kanatzidis MG (2016) Efficient removal and recovery of uranium by a layered organic-inorganic hybrid thiostannate. J Am Chem Soc 138(38):12578–12585. https://doi.org/10.1021/jacs.6b07351

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Li D, Li X, Liao J, Li S, Yang J, Yang Y, Tang J, Liu N (2016) Microorganism-derived carbon microspheres for uranium removal from aqueous solution. Chem Eng J 284:630–639. https://doi.org/10.1016/j.cej.2015.09.015

    Article  CAS  Google Scholar 

  5. El-Maghrabi HH, Younes AA, Salem AR, Rabie K, El-shereafy E-s (2019) Magnetically modified hydroxyapatite nanoparticles for the removal of uranium (VI): preparation, characterization and adsorption optimization. J Hazard Mater 378. https://doi.org/10.1016/j.jhazmat.2019.05.096

  6. Zheng T, Yang Z, Gui D, Liu Z, Wang X, Dai X, Liu S, Zhang L, Gao Y, Chen L, Sheng D, Wang Y, Juan D, Wang J, Zhou R, Chai Z, Albrecht-Schmitt TE, Wang S (2017) Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat Commun 8:15369. https://doi.org/10.1038/ncomms15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Panagiotou N, Liatsou I, Pournara A, Angeli GK, Giappa RM, Tylianakis E, Manos MJ, Froudakis GE, Trikalitis PN, Pashalidis I, Tasiopoulos AJ (2020) Water-stable 2-D Zr MOFs with exceptional UO22+ sorption capability. J Mater Chem A 8(4):1849–1857. https://doi.org/10.1039/c9ta10701k

    Article  CAS  Google Scholar 

  8. Duan S, Wu L, Li J, Huang Y, Tan X, Wen T, Hayat T, Alsaedi A, Wang X (2019) Two-dimensional copper-based metal - organic frameworks nano-sheets composites: one-step synthesis and highly efficient U(VI) immobilization. J Hazard Mater 373:580–590. https://doi.org/10.1016/j.jhazmat.2019.03.119

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Guo X, Li X, Zhang M, Jia Z, Deng Y, Tian Y, Li S, Ma L (2020) Redox-active two-dimensional covalent organic frameworks (COFs) for selective reductive separation of valence-variable, redox-sensitive and long-lived radionuclides. Angewandte Chemie-Int Ed 59(10):4168–4175. https://doi.org/10.1002/anie.201916360

    Article  CAS  Google Scholar 

  10. You Z, Zhang N, Guan Q, Xing Y, Bai F, Sun L (2020) High Sorption Capacity of U(VI) by COF-based material doping hydroxyapatite microspheres: kinetic, equilibrium and mechanism investigation. J Inorgan Organometal Polym Mater 30(6):1966–1979. https://doi.org/10.1007/s10904-019-01420-9

    Article  CAS  Google Scholar 

  11. Wen R, Li Y, Zhang M, Guo X, Li X, Li X, Han J, Hu S, Tan W, Ma L, Li S (2018) Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. J Hazard Mater 358:273–285. https://doi.org/10.1016/j.jhazmat.2018.06.059

    Article  CAS  PubMed  Google Scholar 

  12. Sun Q, Aguila B, Song Y, Ma S (2020) Tailored porous organic polymers for task-specific water purification. Acc Chem Res 53(4):812–821. https://doi.org/10.1021/acs.accounts.0c00007

    Article  CAS  PubMed  Google Scholar 

  13. Bai J, Ma X, Yan H, Zhu J, Wang K, Wang J (2020) A novel functional porous organic polymer for the removal of uranium from wastewater. Microporous Mesoporous Mater 306:110441. https://doi.org/10.1016/j.micromeso.2020.110441

    Article  CAS  Google Scholar 

  14. Yang X, Li J, Liu J, Tian Y, Li B, Cao K, Liu S, Hou M, Li S, Ma L (2014) Simple small molecule carbon source strategy for synthesis of functional hydrothermal carbon: preparation of highly efficient uranium selective solid phase extractant. J Mater Chem A 2(5):1550–1559. https://doi.org/10.1039/c3ta13949b

    Article  CAS  Google Scholar 

  15. Zhao Y, Liu C, Feng M, Chen Z, Li S, Tian G, Wang L, Huang J, Li S (2010) Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon. J Hazard Mater 176(1–3):119–124. https://doi.org/10.1016/j.jhazmat.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  16. Yuan D, Zhang S, Tan J, Dai Y, Wang Y, He Y, Liu Y, Zhao X, Zhang M, Zhang Q (2020) Highly efficacious entrapment of Th (IV) and U (VI) from rare earth elements in concentrated nitric acid solution using a phosphonic acid functionalized porous organic polymer adsorbent. Sep Purific Tech 237. https://doi.org/10.1016/j.seppur.2019.116379

  17. Gunathilake C, Gorka J, Dai S, Jaroniec M (2015) Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J Mater Chem A 3(21):11650–11659. https://doi.org/10.1039/c5ta02863a

    Article  CAS  Google Scholar 

  18. Li D, Egodawatte S, Kaplan DI, Larsen SC, Serkiz SM, Seaman JC, Scheckel KG, Lin J, Pan Y (2017) Sequestration of U(VI) from acidic, alkaline, and high ionic-strength aqueous media by functionalized magnetic mesoporous silica nanoparticles: capacity and binding mechanisms. Environ Sci Technol 51(24):14330–14341. https://doi.org/10.1021/acs.est.7b03778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Yuan L, Chen K, Zhang Y, Deng Q, Du S, Huang Q, Zheng L, Zhang J, Chai Z, Barsoum MW, Wang X, Shi W (2016) Loading Actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces 8(25):16396–16403. https://doi.org/10.1021/acsami.6b02989

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Song H, Yuan L, Li Z, Zhang Y, Gibson JK, Zheng L, Chai Z, Shi W (2018) Efficient U(VI) reduction and sequestration by Ti2CTx MXene. Environ Sci Technol 52(18):10748–10756. https://doi.org/10.1021/acs.est.8b03711

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Wang L, Du K, Wang S, Huang Z, Yuan L, Li Z, Wang H, Zheng L, Chai Z, Shi W (2020) Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. J Hazard Mater 396:122731. https://doi.org/10.1016/j.jhazmat.2020.122731

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Li Y, Zhou Y, Li B, Liu D, Liao H (2019) Efficient removal of uranium using a melamineitrimesic acid-modified hydrothermal carbon-based supramolecular organic framework. J Colloid Interface Sci 544:14–24. https://doi.org/10.1016/j.jcis.2019.02.079

    Article  CAS  PubMed  Google Scholar 

  23. Busseron E, Ruff Y, Moulin E, Giuseppone N (2013) Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5(16):7098–7140. https://doi.org/10.1039/c3nr02176a

    Article  CAS  PubMed  Google Scholar 

  24. Ji X, Yao Y, Li J, Yan X, Huang F (2013) A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing. J Am Chem Soc 135(1):74–77. https://doi.org/10.1021/ja3108559

    Article  CAS  PubMed  Google Scholar 

  25. Jiang D, Fang H, Li G, Zheng G (2020) A responsive supramolecular-organic framework: functionalization with organic laser dye and lanthanide ions for sensing of nitrobenzene. J Solid State Chem 284:121171. https://doi.org/10.1016/j.jssc.2020.121171

    Article  CAS  Google Scholar 

  26. Tian J, Yao C, Yang W-L, Zhang L, Zhang D-W, Wang H, Zhang F, Liu Y, Li Z-T (2017) In situ-prepared homogeneous supramolecular organic framework drug delivery systems (sof-DDSs): overcoming cancer multidrug resistance and controlled release. Chin Chem Lett 28(4):798–806. https://doi.org/10.1016/j.cclet.2017.01.010

    Article  CAS  Google Scholar 

  27. Hatai J, Hirschhaeuser C, Niemeyer J, Schmuck C (2020) Multi-stimuli-responsive supramolecular polymers based on noncovalent and dynamic covalent bonds. ACS Appl Mater Interfaces 12(2):2107–2115. https://doi.org/10.1021/acsami.9b19279

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Yang B, Tian J, Yu S, Wang H, Zhang D, Liu Y, Li Z (2017) Postmodification of a supramolecular organic framework: visible-light-induced recyclable heterogeneous photocatalysis for the reduction of azides to amines. Chem Commun 53(100):13367–13370. https://doi.org/10.1039/c7cc08824h

    Article  CAS  Google Scholar 

  29. Qin L, Zheng J, Xiao S, Zheng X, Cui G (2013) A new supramolecular net constructed with 2D (4,4) layer subunits displaying unique 4-connected msw/P42/nnm topology: structure, fluorescence and catalytic properties. Inorg Chem Commun 34:71–74. https://doi.org/10.1016/j.inoche.2013.05.011

    Article  CAS  Google Scholar 

  30. Patil RS, Banerjee D, Zhang C, Thallapally PK, Atwood JL (2016) Selective CO2 adsorption in a supramolecular organic framework. Angewandte Chemie-Int Ed 55(14):4523–4526. https://doi.org/10.1002/anie.201600658

    Article  CAS  Google Scholar 

  31. Li B, Bai C, Zhang S, Zhao X, Li Y, Wang L, Ding K, Shu X, Li S, Ma L (2015) An adaptive supramolecular organic framework for highly efficient separation of uranium via an in situ induced fit mechanism. J Mater Chem A 3(47):23788–23798. https://doi.org/10.1039/c5ta07970e

    Article  CAS  Google Scholar 

  32. Li B, Wang L, Li Y, Wang D, Wen R, Guo X, Li S, Ma L, Tian Y (2017) Conversion of supramolecular organic framework to uranyl-organic coordination complex: a new “matrix-free” strategy for highly efficient capture of uranium. RSC Adv 7(15):8985–8993. https://doi.org/10.1039/c6ra28356j

    Article  CAS  Google Scholar 

  33. Li H, Li Y, Li B, Dai Y, Chen X (2020) Melamine-induced novel MSONs heterostructured framework: controlled-switching between MOF and SOF via a self-assembling approach for rapid uranium sequestration. Chem Eng J 379:122279. https://doi.org/10.1016/j.cej.2019.122279

    Article  CAS  Google Scholar 

  34. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  35. Duan S, Wang Y, Liu X, Shao D, Hayat T, Alsaedi A, Li J (2017) Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. Acs Sustain Chem Eng 5(5):4073–4085. https://doi.org/10.1021/acssuschemeng.7b00069

    Article  CAS  Google Scholar 

  36. Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744. https://doi.org/10.1016/j.cej.2018.01.089

    Article  CAS  Google Scholar 

  37. Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X, Ma L, Li S (2015) A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium. J Colloid Interface Sci 437:211–218. https://doi.org/10.1016/j.jcis.2014.09.046

    Article  CAS  PubMed  Google Scholar 

  38. Bian L, Shi H, Wang X, Ling K, Ma H, Li M, Cheng Z, Ma C, Cai S, Wu Q, Gan N, Xu X, An Z, Huang W (2018) Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J Am Chem Soc 140(34):10734–10739. https://doi.org/10.1021/jacs.8b03867

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Li R, Liu J, Chen R, Zhang H, Liu Q, Li Z, Wang J (2017) Melamine modified graphene hydrogels for the removal of uranium(VI) from aqueous solution. New J Chem 41(19):10899–10907. https://doi.org/10.1039/c7nj01927k

    Article  CAS  Google Scholar 

  40. Jones WJ, Orville-Thomas WJ (1959) The infra-red spectrum and structure of dicyandiamide. Trans Faraday Soc 55:193–202. https://doi.org/10.1039/tf9595500193

    Article  CAS  Google Scholar 

  41. Cui W, Zhang C, Jiang W, Li F, Liang R, Liu J, Qiu J (2020) Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 11(1):436–436. https://doi.org/10.1038/s41467-020-14289-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin X, Yang W, Yang Y, Gu D, Guo D, Pan Q (2020) A zinc metal-organic framework for concurrent adsorption and detection of uranium. Inorg Chem 59(14):9857–9865. https://doi.org/10.1021/acs.inorgchem.0c01072

    Article  CAS  PubMed  Google Scholar 

  43. Li F, Li X, Cui P, Sun Y (2018) Retracted article: plasma-grafted amidoxime/metal–organic framework composites for the selective sequestration of U(VI). Environ Sci Nano 5(8):2000–2008. https://doi.org/10.1039/c8en00583d

    Article  CAS  Google Scholar 

  44. Chen L, Zhao D, Chen S, Wang X, Chen C (2016) One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J Colloid Interface Sci 472:99–107. https://doi.org/10.1016/j.jcis.2016.03.044

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Pu N, Yu B, Ye G, Chen J, Xu S, Ma S (2020) Skeleton engineering of homocoupled conjugated microporous polymers for highly efficient uranium capture via synergistic coordination. ACS Appl Mater Interfaces 12(3):3688–3696. https://doi.org/10.1021/acsami.9b20944

    Article  CAS  PubMed  Google Scholar 

  46. Xiong J, Hu S, Liu Y, Yu J, Yu H, Xie L, Wen J, Wang X (2017) Polypropylene modified with Amidoxime/Carboxyl groups in separating uranium(VI) from thorium(IV) in aqueous solutions. Acs Sustain Chem Eng 5(2):1924–1930. https://doi.org/10.1021/acssuschemeng.6b02663

    Article  CAS  Google Scholar 

  47. Zhuo Dai L, Huai Qiang Z, Xiao Hong X, Feng L (2019) U(VI) adsorption onto covalent organic frameworks-TpPa-1the. J Solid State Chem 277:484–492. https://doi.org/10.1016/j.jssc.2019.06.044

    Article  CAS  Google Scholar 

  48. Li F, Tang Y, Wang H, Yang J, Li S, Liu J, Tu H, Liao J, Yang Y, Liu N (2017) Functionalized hydrothermal carbon derived from waste pomelo peel as solid-phase extractant for the removal of uranyl from aqueous solution. Environ Sci Pollut Res 24(28):22321–22331. https://doi.org/10.1007/s11356-017-9829-0

    Article  CAS  Google Scholar 

  49. Abu-Alsoud GF, Hawboldt KA, Bottaro CS (2020) Comparison of four adsorption isotherm models for characterizing molecular recognition of individual phenolic compounds in porous tailor-made molecularly imprinted polymer films. ACS Appl Mater Interfaces 12(10):11998–12009. https://doi.org/10.1021/acsami.9b21493

    Article  CAS  PubMed  Google Scholar 

  50. Sarma D, Malliakas CD, Subrahmanyam KS, Islam SM, Kanatzidis MG (2016) K2x Sn4-x S8-x (x = 0.65–1): a new metal sulfide for rapid and selective removal of Cs+, Sr2+ and UO22+ ions. Chem Sci 7 (2):1121–1132. https://doi.org/10.1039/c5sc03040d

  51. Zeng D, Dai Y, Zhang Z, Wang Y, Cao X, Liu Y (2020) Magnetic solid-phase extraction of U(VI) in aqueous solution by Fe3O4@hydroxyapatite. J Radioanal Nuclear Chem 324(3):1329–1337. https://doi.org/10.1007/s10967-020-07148-y

    Article  CAS  Google Scholar 

  52. Wang C, Zheng T, Luo R, Liu C, Zhang M, Li J, Sun X, Shen J, Han W, Wang L (2018) In situ growth of ZIF-8 on pan fibrous filters for highly efficient U(VI) removal. ACS Appl Mater Interfaces 10(28):24164–24171. https://doi.org/10.1021/acsami.8b07826

    Article  CAS  PubMed  Google Scholar 

  53. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981–1985. https://doi.org/10.1021/je800661q

    Article  CAS  Google Scholar 

  54. Mihalcea I, Henry N, Clavier N, Dacheux N, Loiseau T (2011) Occurence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode. Inorg Chem 50(13):6243–6249. https://doi.org/10.1021/ic2005584

    Article  CAS  PubMed  Google Scholar 

  55. Lucena AF, Carretas JM, Marcalo J, Michelini Mdel C, Rutkowski PX, Gibson JK (2014) Dissociation of gas-phase bimetallic clusters as a probe of charge densities: the effective charge of uranyl. J Phys Chem A 118(11):2159–2166. https://doi.org/10.1021/jp500946y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (Grant No. 21876122) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. Haiyue Peng: Conceptualization; methodology; investigation; validation; visualization; formal analysis; writing-original draft; writing-review and editing. Feize Li: Conceptualization; supervision; writing-review and editing. Yang Zeng and Min Li: Formal analysis; writing-review and editing. Jiali Liao, Tu Lan, Yuanyou Yang and JijunYang: Writing-review and editing. Ning Liu: Conceptualization; writing-review and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Feize Li or Ning Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 972 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Li, F., Zeng, Y. et al. A self-assembled supramolecular organic material for selective extraction of uranium from aqueous solution. J Radioanal Nucl Chem 329, 289–300 (2021). https://doi.org/10.1007/s10967-021-07753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07753-5

Keywords

Navigation