Skip to main content
Log in

Comparative evaluation of radiolytic stability of aqueous soluble BTP and BTBP derivatives under static gamma irradiation

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radiolytic stability of aqueous solutions containing two different bis-1,2,4-triazines was studied under static gamma irradiation. Sulphophenyl derivatives of bis-1,2,4- triazinyl pyridine (SO3-Ph-BTP) and bis-1,2,4-triazinylbipyridine (SO3-Ph-BTBP) were dissolved in 0.1 M and 1 M HNO3 solutions and the impact of gamma irradiation was assessed by the measurement of distribution ratios of Am(III) and Eu(III) using irradiated samples. The results were compared for two different organic solvents containing N,N,N’,N’-tetraoctyldiglycolamide (TODGA) or N,N-didodecyl-N’,N’-dioctyldiglycolamide (D3DODGA). The separation efficiency of all the systems remained unchanged when the absorbed dose was 100 kGy, and gradually decreased at 200 kGy and 500 kGy. The radiolytic degradation was more apparent for SO3-Ph-BTBP in comparison to SO3-Ph-BTP at higher acidity. The degradation of sulphonate groups in the molecules was evidenced in ATR-FTIR spectral studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salvatores M (2005) Nuclear fuel cycle strategies including partitioning and transmutation. NuclEng Des 235(7):805–816

    CAS  Google Scholar 

  2. Konings RJM, Kloosterman JL (2001) A view of strategies for transmutation of actinides. ProgNucl Energy 38(3–4):331–334

    CAS  Google Scholar 

  3. Nash KL (1994) Separation chemistry for lanthanides and trivalent actinides. Handb Phys Chem Rare Earths 18:197–238

    Article  Google Scholar 

  4. Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK (2011) Aqueous partitioning of minor actinides by different processes. Sep Purif Rev 40:43–76

    Article  CAS  Google Scholar 

  5. Paiva AP, Malik P (2004) Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes. J Radioanal Nucl Chem 261(2):485–496

    Article  CAS  Google Scholar 

  6. Christiansen B, Apostolidis C, Carlos R, Courson O, Glatz JP, Malmbeck R, Pagliosa G, Römer K, Serrano-Purroy D (2004) Advanced aqueous reprocessing in P&T strategies- Process demonstrations on genuine fuels and targets. Radiochim Acta 92(8):475–480

    Article  CAS  Google Scholar 

  7. Nayak PK, Kumaresan R, Chaurasia S, Venkatesan KA, Subramanian GGS, Prathibha T, Syamala KV, Selvan BR, Rajeswari S, Antony MP, Rao PRV (2015) Studies on the feasibility of using completely incinerable reagents for the single-cycle separation of americium (III) from simulated high-level liquid waste. Radiochim Acta 103:265–275

    CAS  Google Scholar 

  8. Swami KR, Prathibha T, Venkatesan KA, Antony MP (2019) Separation of Am(III) from Eu(III) present in 3 M nitric acid medium using completely incinerable binary extractants. J Mol Liq 279:427–433

    Article  CAS  Google Scholar 

  9. Gelis AV, Lumetta GJ (2014) Actinide lanthanide separation process-ALSEP. Ind Eng Chem Res 53(4):1624–1631

    Article  CAS  Google Scholar 

  10. Matveev P, Mohapatra PK, Kalmykov SN, Petrov V (2020) Solvent extraction systems for mutual separation of Am (III) and Cm (III) from nitric acid solutions. A review of recent state-of-the-art. Solvent Extr Ion Exch. https://doi.org/10.1080/07366299.2020.1856998

    Article  Google Scholar 

  11. Matveev PI, Borisova NE, Andreadi NG, Zakirova GG, Petrov VG, Belova EV, Kalmykov SN, Myasoedov BF (2019) A first phosphine oxide-based extractant with high Am/Cm selectivity. Dalton Trans 48(8):2554–2559

    Article  CAS  Google Scholar 

  12. Modolo G, Wilden A, KaufholzBosbach P, Geist A (2014) Development and demonstration of innovative partitioning processes (i-SANEX and 1-cycle SANEX) for actinide partitioning. Prog Nucl Energy 72:107–114

    Article  CAS  Google Scholar 

  13. Geist A, Müllich U, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T (2012) Actinide (III)/lanthanide (III) separation via selective aqueous complexation of actinides (III) using a hydrophilic 2, 6-bis (1, 2, 4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr Ion Exch 30(5):433–444

    Article  CAS  Google Scholar 

  14. Wilden A, Modolo G, Sypula M, Geist A, Magnusson D (2012) The recovery of An (III) in an innovative-SANEX process using a TODGA-based solvent and selective stripping with a hydrophilic BTP. Procedia Chem 7:418–424

    Article  CAS  Google Scholar 

  15. Lewis FW, Harwood LM, Hudson MJ, Geist A, Kozhevnikov VN, Distler P, John J (2015) Hydrophilic sulfonated bis-1, 2, 4-triazine ligands are highly effective reagents for separating actinides (III) from lanthanides (III) via selective formation of aqueous actinide complexes. Chem Sci 6:4812–4821

    Article  CAS  Google Scholar 

  16. Jose J, Prathibha T, Karthikeyan NS, Venkatesan KA, Selvan BR, Seshadri H, Venkatachalapathy B, Ravichandran C (2020) Evaluation of selected solvent systems for the single-cycle separation of Am (III) from Eu (III) using aqueous soluble sulphonated bis-triazinylpyridine. J Mol Liq 306:112893

    Article  CAS  Google Scholar 

  17. Macerata E, Mossini E, Scaravaggi S, Mariani M, Mele A, Panzeri W, Boubals N, Berthon L, Charbonnel MC, Sansone F, Arduini A (2016) Hydrophilic clicked 2, 6-bis-triazolyl-pyridines endowed with high actinide selectivity and radiochemical stability: toward a closed nuclear fuel cycle. J Am Chem Soc 138(23):7232–7235

    Article  CAS  Google Scholar 

  18. Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A (2018) Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solvent Extr Ion Exch 36(3):223–256

    Article  CAS  Google Scholar 

  19. Swami KR, Venkatesan KA, Antony MP (2019) Role of phase modifiers in controlling the third-phase formation during the solvent extraction of trivalent actinides. Solvent Extr Ion Exch 37(7):500–517

    Article  CAS  Google Scholar 

  20. Swami KR, Venkatesan KA, Antony MP (2018) Aggregation behavior of alkyldiglycolamides in n-dodecane medium during the extraction of Nd (III) and nitric acid. Ind Eng Chem Res 57(40):13490–13497

    Article  Google Scholar 

  21. Ravi J, Venkatesan KA, Antony MP, Srinivasan TG, Rao PRV (2013) Tuning the diglycolamides for modifier-free minor actinide partitioning. J Radioanal Nucl Chem 295(2):1283–1292

    Article  CAS  Google Scholar 

  22. Jose J, Prathibha T, Karthikeyan NS, Venkatesan KA, Sriram S, Seshadri H, Venkatachalapathy B, Ravichandran C (2020) Studies on the separation of Am(III) from trivalent lanthanides in high-level waste solution using modifier-free solvents and aqueous soluble bis-1,2,4-triazines. J Radioanal Nucl Chem 326:1819–1829

    Article  CAS  Google Scholar 

  23. Hill C, Guillaneux D, Berthon L, Madic C (2002) SANEX-BTP process development studies. J Nucl Sci Technol 39(sup3):309–312

    Article  Google Scholar 

  24. Hill C, Berthon L, Madic C (2005) Study of the stability of BTP extractants under radiolysis. Proc Int Conf GLOBAL Japan p. 283

  25. Galán H, Munzel D, Núñez A, Müllich U, Cobos J, Geist A (2014) Stability and recyclability of SO3-Ph-BTP for i-SANEX process development. Proc Int Solvent Extr Conf (ISEC 2014), pp: 137–143

  26. Peterman D, Geist A, Mincher B, Modolo G, Galán MH, Olson L, McDowell R (2016) Performance of an i-SANEX system based on a water-soluble BTP under continuous irradiation in a γ-radiolysis test loop. Ind Eng Chem Res 55(39):10427–10435

    Article  CAS  Google Scholar 

  27. Horne GP, Mezyk SP, Moulton N, Peller JR, Geist A (2019) Time-resolved and steady-state irradiation of hydrophilic sulfonated bis-triazinyl-(bi)pyridines–modelling radiolytic degradation. Dalton Trans 48(14):4547–4554

    Article  CAS  Google Scholar 

  28. Sánchez-García I, Galán H, Perlado JM, Cobos J (2020) Development of experimental irradiation strategies to evaluate the robustness of TODGA and water-soluble BTP extraction systems for advanced nuclear fuel recycling. Rad Phy Chem 177:109094

    Article  Google Scholar 

  29. Sánchez-García I, Galán H, Perlado JM, Cobos J (2019) Stability studies of GANEX system under different irradiation conditions. EPJ Nucl Sci Technol 5:19

    Article  Google Scholar 

  30. Sugo Y, Sasaki Y, Tachimori S (2002) Studies on hydrolysis and radiolysis of N, N, N′, N′-tetraoctyl-3-oxapentane-1, 5-diamide. Radiochim Acta 90(3):161–165

    Article  CAS  Google Scholar 

  31. Gujar RB, Ansari SA, Bhattacharyya A, Kanekar AS, Pathak PN, Mohapatra PK, Manchanda VK (2012) Radiolytic stability of N, N, N′, N′-tetraoctyldiglycolamide (TODGA) in the presence of phase modifiers dissolved in n-dodecane. Solvent Extr Ion Exch 30(3):278–290

    Article  CAS  Google Scholar 

  32. Ravi J, Selvan BR, Venkatesan KA, Antony MP, Srinivasan TG, Rao PRV (2014) Evaluation of radiation stability of N, N-didodecyl N′, N′-di-octyl diglycolamide: a promising reagent for actinide partitioning. J Radioanal Nucl Chem 299(1):879–885

    Article  CAS  Google Scholar 

  33. Roscioli-Johnson KM, Zarzana CA, Groenewold GS, Mincher BJ, Wilden A, Schmidt H, Modolo G, Santiago-Schübel B (2016) A study of the γ-radiolysis of N, N-didodecyl-N′, N′-dioctyldiglycolamide using UHPLC-ESI-MS analysis. Solv Extr Ion Exch 34(5):439–453

    Article  CAS  Google Scholar 

  34. Coates J (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation

  35. Sánchez-García I, Bonales LJ, Galán H, Perlado JM, Cobos J (2021) Radiolytic degradation of sulphonated BTP and acetohydroxamic acid under EURO-GANEX process conditions. Rad Phy Chem 183:109402

    Article  Google Scholar 

Download references

Acknowledgements

The authors from Easwari Engineering College acknowledge the financial support received from Atomic Energy Regulatory Board (AERB), India (Ref. No. AERB/CSRP/PROJ.No.65/06/2017) and the Grant-in-Aid by FIST scheme from Department of Science and Technology (DST), New Delhi, India (sanction order no: SR/FIST/college-110/2017 dated on 16-01-2018). All authors thank Sri H. Krishnan, Radiological Safety Group, IGCAR for providing the gamma irradiation facility and Dr. N Sivaraman, Director, Materials Chemistry and Metal Fuel Cycle Group, IGCAR for his keen interest in the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Karthikeyan or K. A. Venkatesan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, J., Prathibha, T., Karthikeyan, N.S. et al. Comparative evaluation of radiolytic stability of aqueous soluble BTP and BTBP derivatives under static gamma irradiation. J Radioanal Nucl Chem 328, 1127–1136 (2021). https://doi.org/10.1007/s10967-021-07711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07711-1

Keywords

Navigation