Skip to main content
Log in

Comparative studies on radiolytic degradation of deuterium labeled and unlabeled tributyl phosphates

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Deuterium labeled tributyl phosphates were synthesized and their solutions in n-dodecane have been investigated for γ-radiolytic degradation up to an absorbed dose of 2,000 kGy from a 60Co source. The performance was compared with undeuterated TBP. Radiolysis extent and pattern of formation of major degradation products, viz. dibutyl hydrogen phosphate and monobutyl dihydrogen phosphate were found to be very similar from deuterated or undeuterated samples. Extraction behavior for UO2 2+ and Pu(IV) was studied after the radiolysis, and the results showed similarity in extraction/stripping behavior for all labeled or unlabeled TBP samples. The isotope effect (k H/k D) observed is minimal in this γ-radiolytic degradation study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schulz W, Navratil JD, Talbot AE (1984) Science and technology of tributyl phosphate. CRC Press, Florida

    Google Scholar 

  2. Wright A, Paviet-Hartman P (2010) Review of physical and chemical properties of tributyl phosphate/diluent/nitric acid system. Sep Sci Technol 45:1753–1762

    Article  CAS  Google Scholar 

  3. Irish ER, Reas WH (1996) The PUREX process-a solvent extraction reprocessing method for irradiated uranium. General Electric, Washington

    Google Scholar 

  4. Mincher BJ, Elias G, Martin LR, Mezyk SP (2009) Radiation chemistry and the nuclear fuel cycle. J Radioanal Nucl Chem 282:645–649

    Article  CAS  Google Scholar 

  5. Davis W Jr (1984) In: Schulz W, Navratil JD, Talbot AE (eds) Radiolytic behavior. CRC Press, Florida, p 221

    Google Scholar 

  6. Mincher BJ, Modolo G, Mezyk SP (2009) The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr Ion Exch 27:1–25

    Article  CAS  Google Scholar 

  7. Tripathi SC, Ramanujam A, Gupta KK, Bindu P (2001) Studies on the identification of harmful radiolytic products of 30% TBP-n-dodecane–HNO3 by gas–liquid chromatography. II. Formation and characterization of high molecular weight organophosphates. Sep Sci Technol 36:2863–2883

    Article  CAS  Google Scholar 

  8. Sharma JN, Ruhela R, Singh KK, Kumar M, Janardhanan C, Achutan PV, Manohar S, Wattal PK, Suri AK (2010) Studies on hydrolysis and radiolysis of tetra(2-ethylhexyl)diglycolamide (TEHDGA)/isodecyl alcohol/n-dodecane solvent system. Radiochim Acta 98:485–490

    Article  CAS  Google Scholar 

  9. Nowak Z (1977) Radiolytic degradation of extractant-diluent systems used in the PUREX process. Nukleonika 22:155–172

    CAS  Google Scholar 

  10. Lasage D, Virelizier H, Jankowski CK, Tabet JC (1997) Identification of minor products obtained during radiolysis of tributylphosphate (TBP). Spectroscopy 13:275–290

    Article  Google Scholar 

  11. Lamouroux C, Virelizier H, Moilin C, Jankowski CK (2001) Application of gas chromatography–tandem mass spectrometry to the analysis of inhibition of dimerisation of tributylphosphate under radiolysis. Identification of isomeric tributylphosphate-alkylbenzene inhibitor coupling products. J Chromatogr 917:261–275

    Article  CAS  Google Scholar 

  12. Lasage D, Virelizier H, Jankowski CK, Tabet JC (1998) Identification of isomeric tributylphosphate dimers formed by radiolysis using tandem mass spectrometry and stable isotopic labeling. Eur J Mass Spectrom 4:47–54

    Article  Google Scholar 

  13. Ginisty C, Guillame B (1990) Solvent distillation studies for a purex reprocessing plant. Sep Sci Technol 25:1941–1952

    Article  CAS  Google Scholar 

  14. He H, Lin M, Muroya Y, Kudo H, Katsumura Y (2004) Laser photolysis study on the reaction of nitrate radical with tributylphosphate and its analogues-comparison with sulfate radical. Phys Chem Chem Phys 6:1264–1268

    Article  CAS  Google Scholar 

  15. Mincher BJ, Mezyk SP, Martin LR (2008) A pulse radiolysis investigation of the reactions of tributylphosphate with the radical products of aqueous nitric acid irradiation. J Phys Chem 112:6275–6280

    Article  CAS  Google Scholar 

  16. Tahraoui A, Morris JH (1995) Decomposition of solvent extraction media during nuclear reprocessing: literature review. Sep Sci Technol 30:2603–2630

    Article  CAS  Google Scholar 

  17. Nowak Z, Nowak M, Seydel A (1979) The radiolysis of TBP–dodecane–HNO3 systems. Radiochem Radioanal Lett 38:343–354

    CAS  Google Scholar 

  18. Tsujino T, Ishihara T (1966) Changes to plutonium extraction behavior of TBP and alkylamines through irradiation. J Nucl Sci Technol 3:320–325

    Article  CAS  Google Scholar 

  19. Kawaguchim Y, Morimoto K, Kitao T, Ohyama K, Omori E (2009) Study of solvent degradation in reprocessing mox spent fuel; solvent degradation and its effect on Pu purification cycle. Trans Atom Energy Soc Jpn 8:221–229

    Article  Google Scholar 

  20. Tripathi SC, Bindu P, Ramanujam A (2001) Studies on the identification of harmful radiolytic products of 30 % TBP-n-dodecane-HNO3 by gas liquid chromatography. I. Formation of diluent degradation products and their role in Pu retention behaviour. Sep Sci Technol 36:1463–1468

    Article  CAS  Google Scholar 

  21. Tripathi SC, Sumathi S, Ramanujam A (1999) Effect on solvent recycling on radiolytic degradation of 30% tributyl phosphate–n-dodecane-HNO3 system. Sep Sci Technol 34:2887–2903

    Article  CAS  Google Scholar 

  22. Wilkinson RW, Williams TF (1961) The radiolysis of tri-n-alkyl phosphates. J Chem Soc 4098–4107

  23. Kuruc J, Zubarev VE, Bugaenko LT, Macášek F (1988) ESR spectra of radicals at a low-temperature x-radiolysis of phosphates. J Radioanal Nucl Chem Lett 127:37–49

    Article  CAS  Google Scholar 

  24. Gillbro T, Lund (1974) Energy transfer in γ-irradiated C10D22–C10H22 crystals. Isotope effect on radical formation. A Chem Phy Lett 27:300–304

    Article  CAS  Google Scholar 

  25. Miwa GT, Walsh JS, Kedderis GL, Hollenberg PF (1983) The use of intramolecular isotope effects to distinguish between deprotonation and hydrogen atom abstraction mechanisms in cytochrome P-450- and peroxidase-catalyzed N-demethylation. J Biol Chem 258:14445–14449

    CAS  Google Scholar 

  26. Westheimer FH (1961) The magnitude of the primary kinetic isotope effect for compounds of hydrogen and deuterium. Chem Rev 61:265–273

    Article  CAS  Google Scholar 

  27. Melande LCS, Saunders WH Jr (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  28. Bell RP (1980) The tunnel effect in chemistry. Chapman and Hall, London

    Book  Google Scholar 

  29. Van Hook WA (2011) Isotope effects in chemistry. Nukleonika 56:217–240

    Google Scholar 

  30. Collins CJ, Bowman NS (1970) Isotope effects in chemical reactions. Van Nostrand Rheinhold, New York

    Google Scholar 

  31. Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys 1:15–76

    CAS  Google Scholar 

  32. Kohen A, Limbach HH (eds) (2006) Isotope effects in chemistry and biology. Taylor and Francis, Boca Raton

    Google Scholar 

  33. Wolfsberg M, Van Hook WA, Paneth P, Rebelo LPN (2010) Isotope effects in the chemical, geological, and bio sciences. Springer, Dordrecht

    Google Scholar 

  34. Jancso G (2003) Isotope effects. In: Vertes A, Nagy S, Klencsar Z (eds) Handbook of isotope chemistry. Kluwer, Dordrecht 4:85–116

  35. Hennig C, Oswald RB, Schmatz S (2006) Secondary kinetic isotope effect in nucleophilic substitution: a quantum-mechanical approach. J Phys Chem A 110:3071–3079

    Article  CAS  Google Scholar 

  36. Tashiro M, Tsuzuki H, Mataka S, Yonemitsu T (1991) Preparation of valeric acids, pentenoic acids, and γ-valerolactones labelled with deuterium. J Labelled Comp Radiopharm 29:691–701

    Article  CAS  Google Scholar 

  37. Mincher BJ, Curry RD (2000) Considerations for choice of a kinetic figure of merit in process radiation chemistry for waste treatment. Appl Radiat Isot 52:189–192

    Article  CAS  Google Scholar 

  38. Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  39. Peterman DR, Mincher BJ, Riddle CL, Tillotson RD (2010) Summary report on gamma radiolysis of TBP/n-dodecane in the presence of nitric acid using the hydrolysis/radiolysis test loop, INL/EXT-10-19866, Aug. 2010

  40. Venkatasan KA, Robertselvan B, Antony MP, Srinivasan TG, Vasudeva Rao PR (2006) Physiochemical and plutonium retention properties of hydrolytic and radiolytically degraded tri-n-amylphosphate. Solvent Extr Ion Exch 24:747–763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunil K. Ghosh or Joti N. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Ghosh, S.K., Naik, D.B. et al. Comparative studies on radiolytic degradation of deuterium labeled and unlabeled tributyl phosphates. J Radioanal Nucl Chem 302, 583–591 (2014). https://doi.org/10.1007/s10967-014-3261-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3261-4

Keywords

Navigation