Skip to main content
Log in

Natural radioactivity and external hazard index in Brazilian sands

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The distribution of natural radiation from Brazilian beach sands was studied using gamma-ray spectrometry. While in most of the regions studied the dose due to external exposure to gamma-rays, proceeding from natural terrestrial elements, are within the values 0.3 and 1.0 mSv/year, some sand samples from Bahia, Rio de Janeiro and Sao Paulo states present higher radioactivity levels due to the presence of monazite and zircon, exceeding the world average value for external exposure due to naturally occurring radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baykara O, Dogru M (2009) Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones. Radiat Meas 44:116–121

    Article  CAS  Google Scholar 

  2. Bingöldağ N, Otansev P (2018) Determination of natural radiation levels and lifetime cancer risk in Kırıkkale, Turkey. Radiochim Acta 106(5):401–411

    Google Scholar 

  3. Mc Laughlin JP (2015) Some characteristics and effects of natural radiation. Radiat Prot Dosimetry 167(1–3):2–7

    Article  CAS  Google Scholar 

  4. Shahbazi-Gahrouei D et al (2013) A review on natural background radiation. Adv Biomed Res (Ser Online) 2:65

    Article  Google Scholar 

  5. UNSCEAR (2000) Sources and Effects of Ionizing Radiation. United Nations, New York, and references there in. https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf. Accessed 12 Feb 2021

  6. Firestone RB, Shirley VS (1996) Table of isotopes CD ROM edition. Version 1.0 March, 1996. S.Y. Frank Chu CD-ROM Editor

  7. Mohanty AK et al (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38:153–165

    Article  CAS  Google Scholar 

  8. Penna-Franca E et al (1965) Status of investigations in the Brazilian areas of high natural radioactivity. Health Phys 11:699–712

    Article  Google Scholar 

  9. Paschoa AS (2000) More than forty years of studies of natural radioactivity in Brazil. Technology 7:193–212

    Google Scholar 

  10. Paschoa AS and Steinhausler F (2010) Technologically enhanced natural radiation. Radioact Environ 17 (series editor M.S. Baxter, Elsevier Ltd)

  11. Anjos RM et al (2004) Radioecology teaching: evaluation of the background radiation levels from areas with high concentrations of radionuclides in soil. Eur J Phys 25(2):133–144

    Article  CAS  Google Scholar 

  12. Wei L, Sugahara T (2000) An introductory overview of the epidemiological study on the population at the high background radiation areas in Yangjiang, China. J Radiat Res 41:S1–S7

    Article  Google Scholar 

  13. Paul AC et al (1998) Population exposure to airborne thorium at the high natural radiation areas in India. J Environ Radioact 40:251–259

    Article  CAS  Google Scholar 

  14. Ghiassi-Nejad M et al (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82:87–93

    Article  CAS  Google Scholar 

  15. NCRP (1987). Report No. 094, National Council on Radiation Protection and Measurements, Bethesda, Maryland. https://ncrponline.org/shop/reports/report-no-094-exposure-of-the-population-in-the-united-states-and-canada-from-natural-background-radiation-supersedes-ncrp-report-no-45-1987/. Accessed 12 Feb 2021

  16. UNSCEAR (2008) Report vol. I, Sources of Ionizing Radiation. Tables A-1 to A 14. https://www.unscear.org/docs/publications/2008/UNSCEAR_2008_Annex-B-CORR.pdf. Accessed 12 Feb 2021

  17. Alencar AS, Freitas AC (2005) Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region. Radiat Meas 40:76–83

    Article  CAS  Google Scholar 

  18. Anjos RM et al (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39:245–253

    Article  CAS  Google Scholar 

  19. Bezuidenhout J (2014) The background radiation and exposure levels at various South African west coast military units, Scientia Militaria. South Afr J Military Stud 42:164–176

    Google Scholar 

  20. Chiozzi P et al (2000) Laboratory application of NaI(Tl) γ-ray spectrometry to studies of natural radioactivity in geophysics. Appl Radiat Isot 53:127–132

    Article  CAS  Google Scholar 

  21. Joel ES et al (2019) Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications. Sci Rep 9. Article number: 4219

  22. Malanca A et al (1996) Distribution of 226Ra, 232Th, and 40K in soils of Rio Grande do Norte (Brazil). J Environ Radioact 30:55–67

    Article  CAS  Google Scholar 

  23. Masok FB et al (2018) Measurement of radioactivity concentration in soil samples around phosphate rock storage facility in Richards Bay, South Africa. J Radiat Res Appl Sci 11(1):29–36

    Article  CAS  Google Scholar 

  24. Mubarak F et al (2017) Radiological investigation of high background radiation areas. Sci Rep 7. Art. 15223

  25. Pereira BR et al (2013) Titanium extraction from waste NORM. In: X Latin American symposium on nuclear physics and applications. Proceedings of science (X LASNPA) 076

  26. Silveira MAG et al (2012) High natural radiation in Brazilian sands. In: IX Latin American symposium on nuclear physics and applications AIP conference proceedings 1423, pp 379–382

  27. Silveira MAG et al (2015) Natural radiation in byproducts of the production of phosphoric acid. In: International joint conference RADIO 2014, Brazilian Journal of Radiation Sciences. 3, 1 A

  28. Veiga R et al (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41:189–196

    Article  CAS  Google Scholar 

  29. Matsumoto MM, et al. (2008) “The Study of Natural Radiation Distribution in Soil of Sao Bernardo do Campo”, Natural Radiation Environment: 8th International Symposium (NRE VIII). American Institute of Physics Conference Proceedings, 2008, 1034, p. 252-255.

  30. Silveira MAG et al (2009) Natural radiation from soil using gamma-ray spectrometry. In: Nuclear physics 2008: XXXI workshop on nuclear physics in Brazil. American Institute of Physics conference proceedings, 1139, p 153–155

  31. Aguiar VAP et al (2010) Absorbed gamma-ray doses due to natural radionuclides in building materials. In: Melville NY (ed) XXXII Brazilian workshop on nuclear physics. American Institute of Physics conference proceedings, 1245, pp 98–103

  32. Beretka J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  33. Orgun Y et al (2007) Natural andantrhopogenic radionuclides in rocks and bech sands from Ezine region (Çanakkale), Westerm Anatolia, Turkey. App Radiat Isot 64:739–747

    Article  Google Scholar 

  34. Silveira MAG et al (2016) Revisiting natural radiation in Itacaré and Guarapari Beaches. J Nucl Phys Mater Radiat Appl 4:1–11

    Google Scholar 

  35. Rosenblum S, Brownfield IK (1999) Magnetic susceptibilities of minerals. Open-file report no. 99–529, U.S. Department of the Interior—U.S. Geological Survey

  36. Souza SHM et al (2016) Spatial sediment variability in a tropical tide dominated estuary: sources and drivers. J S Am Earth Sci 72:115–125

    Article  Google Scholar 

  37. Aguiar VAP et al (2010) Scanning electron microscopy as a tool for studying environmental radiation. In: 17th international microscopy congress, IMC 17 proceedings

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, proc. 07/04663-3), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, proc. 306353/2018-0) and INCT-FNA proc. n. 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Guazzelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guazzelli, M.A., Medina, N.H. & Aguiar, V.A.P. Natural radioactivity and external hazard index in Brazilian sands. J Radioanal Nucl Chem 328, 903–910 (2021). https://doi.org/10.1007/s10967-021-07707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07707-x

Keywords

Navigation