Skip to main content
Log in

Probing electronic environment in gamma irradiated sodium borosilicate glass and simulated waste glass: a perturbed angular correlation spectroscopy study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Time Differential Perturbed Angular Correlation (TDPAC) has been used to investigate the local structural changes (if any) in Sodium borosilicate (NBS) Glass and Simulated Waste Oxide loaded sodium borosilicate glass (SNBS) used for immobilization of high-level liquid waste at Trombay, Mumbai. The glasses were doped with 181Hf tracer as TDPAC probe and irradiated with varying dose (1–50 MGy) of gamma radiation using 60Co (average γ energy 1.25 MeV) source. Hyperfine interaction parameters (quadrupole interaction frequency, its distribution and asymmetry of electric field gradient) were obtained for irradiated NBS and SNBS glasses from fitting of TDPAC data using DPAC software. The data was compared with the corresponding unirradiated glasses. Results do not show any micro-crystallinity upon irradiation in both the NBS and SNBS glass even at the highest gamma dose of 50 MGy even though small changes were observed in quadrupole interaction frequency at doses beyond 30 MGy. This suggests that the sodium borosilicate glass used for immobilization of high-level waste at Trombay is stable towards gamma radiation at least up to a gamma dose of 50 MGy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohapatra M, Tomar BS (2013) Spectroscopic investigations of radiation damage in glasses used for immobilization of radioactive waste. Defect Diffus Forum 341:107–128

    Article  Google Scholar 

  2. Vernaz E, Veyer C, Gin S (2016) 6.15–Waste Glasses. In: Konings R J M & Stoller R E (eds) Comprehensive Nuclear Materials, 2nd Edition, Elsevier:451. https://doi.org/10.1016/B978-0-12-803581-8.00758-X

  3. Lumpkin GR (2018) Ceramic host phases for nuclear waste remediation. Experimental and Theoretical Approaches to Actinide Chemistry. Wiley, Chichester, pp 333–377

    Chapter  Google Scholar 

  4. Jantzen CM, Ojovan MI (2019) On selection of matrix (Wasteform) material for higher activity nuclear waste immobilization (review). Russ J Inorg Chem 64:1611–1624. https://doi.org/10.1134/S0036023619130047

    Article  CAS  Google Scholar 

  5. Matzke H, Vernaz E (1993) Thermal and physicochemical properties important for the long term behavior of nuclear waste glasses. J Nucl Mater 201:295–309. https://doi.org/10.1016/0022-3115(93)90186-3

    Article  CAS  Google Scholar 

  6. Antonini M, Camagni P, Lanza F, Manara A (1980) Atomic Displacements and Radiation Damage in Glasses Incorporating HLW. In: Northrup CJM (ed) Scientific Basis for Nuclear Waste Management. Advances in Nuclear Science & Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3839-0_15

    Chapter  Google Scholar 

  7. Manara A, Antonini M, Camagni P, Gibson PN (1984) Radiation damage in silica-based glasses: point defects, microstructural changes and possible implications on etching and leaching. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 1:475–480. https://doi.org/10.1016/0168-583X(84)90112-5

    Article  Google Scholar 

  8. Cousens DR, Myhra S (1983) The effects of ionizing radiation on HLW glasses. J Non Cryst Solids 54:345–365. https://doi.org/10.1016/0022-3093(83)90075-3

    Article  CAS  Google Scholar 

  9. Barkatt A, Barkatt A, Sousanpour W (1982) Effects of γ radiation on the leaching kinetics of various nuclear waste-form materials. Nature 300:339–341. https://doi.org/10.1038/300339a0

    Article  CAS  Google Scholar 

  10. Imai H, Arai K, Isoya J et al (1993) Generation of E’ centers and oxygen hole centers in synthetic silica glasses by γ irradiation. Phys Rev B. https://doi.org/10.1103/PhysRevB.48.3116

    Article  Google Scholar 

  11. Imai H, Arai K, Isoya J et al (1994) Erratum: Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation. Phys Rev B 49:3691–3691. https://doi.org/10.1103/PhysRevB.49.3691

    Article  CAS  Google Scholar 

  12. Inagaki Y, Furuya H, Kikuchi T, Idemitsu K (1991) Electron spin resonance studies of gamma-irradiation damage in simulated nuclear waste glass. J Nucl Sci Technol 28:314–320. https://doi.org/10.1080/18811248.1991.9731361

    Article  CAS  Google Scholar 

  13. Kaur R, Singh S, Pandey OP (2012) FTIR structural investigation of gamma irradiated BaO–Na2O–B2O3–SiO2 glasses. Phys B Condens Matter 407:4765–4769. https://doi.org/10.1016/j.physb.2012.08.031

    Article  CAS  Google Scholar 

  14. Laopaiboon R, Bootjomchai C (2014) Glass structure responses to gamma irradiation using infrared absorption spectroscopy and ultrasonic techniques: a comparative study between Co2O3 and Fe2O3. Appl Radiat Isot 89:42–46. https://doi.org/10.1016/j.apradiso.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  15. Dewan L, Hobbs LW, Delaye JM (2012) Topological analysis of the structure of self-irradiated sodium borosilicate glass. J Non-Crystall Solids 358:3427–3432

    Article  CAS  Google Scholar 

  16. Mohapatra M, Kadam RM, Mishra RK et al (2011) Gamma radiation induced changes in nuclear waste glass containing Eu. Phys B Condens Matter 406:3980–3984. https://doi.org/10.1016/J.PHYSB.2011.07.043

    Article  CAS  Google Scholar 

  17. Banerjee D, Das SK, Thakare SV (2017) Simultaneous measurement of electric field gradient both at 111Cd and 181Ta sites in a single perturbed angular correlation measurement. J Radioanal Nucl Chem 313:677–682. https://doi.org/10.1007/s10967-017-5301-3

    Article  CAS  Google Scholar 

  18. Sato W, Komatsuda S, Yamada Y, Ohkubo Y (2015) Local structures at In impurity sites in ZnO probed by the TDPAC technique. J Radioanal Nucl Chem 303:1201–1204. https://doi.org/10.1007/s10967-014-3446-x

    Article  CAS  Google Scholar 

  19. Banerjee D, Guin R, Das SK, Thakare SV (2011) Effect of γ-dose on the crystal structure and leaching behavior of TiO2 matrix labeled with 181Hf/181Ta tracer. J Radioanal Nucl Chem 290:119–121. https://doi.org/10.1007/s10967-011-1155-2

    Article  CAS  Google Scholar 

  20. Zacate M, Jaeger H (2011) Perturbed angular correlation spectroscopy - A tool for the study of defects and diffusion at the atomic scale. Defect Diffus Forum 311:3–38

    Article  CAS  Google Scholar 

  21. Cavalcante FHM, Gomes MR, Carbonari AW et al (2010) Characterization of nanostructured HfO2 films using perturbed angular correlation (PAC) technique. Hyperfine Interact 198:41–45. https://doi.org/10.1007/s10751-010-0250-z

    Article  CAS  Google Scholar 

  22. Dey CC (2015) An unusual structural phase transition in Rb2HfF6. J Phys Chem Solids 78:12–19. https://doi.org/10.1016/J.JPCS.2014.10.017

    Article  CAS  Google Scholar 

  23. Banerjee D, Das SK (2014) Study of the role of metal core on the thermal behavior of Ag@TiO 2 core-shell nanoparticles. J Radioanal Nucl Chem 300:99–105. https://doi.org/10.1007/s10967-014-2950-3

    Article  CAS  Google Scholar 

  24. Das K, Tomar BS, Atomic B (1990) Perturbed angular correlation studies of the Hf—EDTA complex. Polyhedron 9:2705–2708. https://doi.org/10.1016/S0277-5387(00)86799-6

    Article  CAS  Google Scholar 

  25. Kumar A, Nayak C, Rajput P et al (2016) Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS. Hyperfine Interact 237:143. https://doi.org/10.1007/s10751-016-1361-y

    Article  CAS  Google Scholar 

  26. Kumar A, Mishra RK, Khader SA et al (2021) Electron beam irradiation induced changes in local structure of simulated waste bearing sodium borosilicate glasses. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 486:85–93. https://doi.org/10.1016/j.nimb.2020.11.007

    Article  CAS  Google Scholar 

  27. Kumar A, Mandal G, Das P, Tomar BS (2017) Hyperfine interaction study of pressure induced phase transformations in Hafnia. J Radioanal Nucl Chem 313:683–687. https://doi.org/10.1007/s10967-017-5351-6

    Article  CAS  Google Scholar 

  28. Chatterjee A, Ramachandran K, Kumar A, Behere A (2013) Linux advanced multiparameter system. Nucl Phys Div BARC http//www tifr res in/~ pell/lamps html

  29. Frauenfelder H, Steffen RM (1965) Angular distribution of nuclear radiation. In: Siegbahn K (ed) Alpha, beta and gamma-ray spectroscopy, 1st edn. North-Holland Publishing company, Amsterdam, p 997

    Google Scholar 

  30. Catchen GL (1995) Perturbed-angular-correlation spectroscopy: renaissance of a nuclear technique. MRS Bull 20:37–46. https://doi.org/10.1557/S0883769400037167

    Article  CAS  Google Scholar 

  31. Lindgren B (1996) Depack. Hyperfine Interac C1:613 (private communication)

  32. Koički S, Manasijević M, Cekić B (1983) Temperature dependence of electric quadrupole interaction of181Ta in HfO2. Hyperfine Interact 14:105–110. https://doi.org/10.1007/BF02143936

    Article  Google Scholar 

  33. Baccaro S, Catallo N, Cemmi A, Sharma G (2011) Radiation damage of alkali borate glasses for application in safe nuclear waste disposal. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269:167–173. https://doi.org/10.1016/j.nimb.2010.10.019

    Article  CAS  Google Scholar 

  34. Wang TT, Zhang XY, Sun ML et al (2020) γ-Irradiation effects in borosilicate glass studied by EPR and UV–Vis spectroscopies. Nucl Instrum Methods Phys Res Sect B Beam Interact with Mater Atoms 464:106–110. https://doi.org/10.1016/j.nimb.2019.12.007

    Article  CAS  Google Scholar 

Download references

Acknowledgement

B.S. Tomar acknowledges the support from the Department of Atomic Energy towards Raja Ramanna fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashwani Kumar or B. S. Tomar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mishra, R.K., Bhardwaj, Y.K. et al. Probing electronic environment in gamma irradiated sodium borosilicate glass and simulated waste glass: a perturbed angular correlation spectroscopy study. J Radioanal Nucl Chem 328, 569–576 (2021). https://doi.org/10.1007/s10967-021-07686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07686-z

Keywords

Navigation