Skip to main content
Log in

Rapid method for sequential determination of Pu and Am in soil and sediment samples by sector-field inductively coupled plasma mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

New method was developed to analyze Pu and Am sequentially for soil and sediment by inductively coupled plasma mass spectrometry (ICPMS). The developed method uses conc. HNO3 to leach Pu and Am, Fe(OH)3 coprecipitation to remove alkali and alkaline metals, extraction chromatographic separation using UTEVA, DGA and TEVA resins to remove interfering elements (IEs) and separate Pu and Am from each other, and sector field-ICPMS to measure Pu and Am. The analysis of four standard reference materials showed that both Pu isotopes and 241Am were accurately determined by this method, as a result of its excellent decontamination ability of IEs. Especially the high decontamination factor of Pu [DF(Pu), 4.2 × 102] in Am fraction and high DF(Am) (7.0 × 103) in Pu fraction sufficiently eliminated the cross interference between 241Pu and 241Am in ICPMS measurement. In addition, stable and high chemical recoveries were achieved for Pu (71–91%) and Am (70–88%). The low LODs of Pu isotopes, short analytical time (14 h) and high DFs of IEs allows this method to sequentially analyze Pu and Am, for both global fallout and nuclear accident sourced samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. Shabana EI, Al-Shammari HL (2001) Assessment of the global fallout of plutonium isotopes and americium-241 in the soil of central region of Saudi Arabia. J Environ Radioactiv 57:67–74

    Article  CAS  Google Scholar 

  2. Sokolik GA, Ovsiannikova SV, Ivanova TG, Leinova SL (2004) Soil-plant transfer of plutonium and americium in contaminated regions of Belarus after the Chernobyl catastrophe. Environ Int 30:939–947

    Article  CAS  PubMed  Google Scholar 

  3. Yamamoto M, Sakaguchi A, Ochiai S, Takada T, Hamataka K, Murakami T, Nagao S (2014) Isotopic Pu, Am and Cm signatures in environmental samples contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 132:31–46

    Article  CAS  PubMed  Google Scholar 

  4. Chu SYF, Ekström LP, Firestone RB Table of radioactive isotopes, database version 1999-02-28 from URL http://nucleardata.lu.se/nucleardata/toi/ (obtained on 2021–01–29).

  5. Steinhauser G (2014) Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions. Environ Sci Technol 48:4649–4663

    Article  CAS  PubMed  Google Scholar 

  6. Ni YY, Wang ZT, Guo QJ, Zheng J, Li SX, Lin JX, Tan ZY, Huang WN (2018) Distinctive distributions and migrations of 239+240Pu and 241Am in Chinese forest, grassland and dessert soils. Chemosphere 212:1002–1009

    Article  CAS  PubMed  Google Scholar 

  7. Maxwell SL (2008) Rapid method for determination of plutonium, americium and curium in large soil samples. J Radioanal Nucl Chem 275:497–502

    Article  CAS  Google Scholar 

  8. Maxwell SL, Culligan B, Hutchison JB, McAlister DR (2015) Rapid fusion method for the determination of Pu, Np, and Am in large soil samples. J Radioanal Nucl Chem 305:599–608

    Article  CAS  Google Scholar 

  9. Kumar R, Dubla R, Yadav JR (2013) A method for estimation of Pu-isotopes in urine samples using TEVA resin and alpha spectrometry. J Radioanal Nucl Chem 295:2147–2152

    Article  CAS  Google Scholar 

  10. Kim H, Chung KH, Jung Y, Jang M, Kang MJ, Choi GS (2015) A rapid and efficient automated method for the sequential separation of plutonium and radiostrotium in seawater. J Radioanal Nucl Chem 304:321–327

    Article  CAS  Google Scholar 

  11. Qiao JX, Hou XL, Roos P, Miro M (2009) Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry. Anal Chem 81:8185–8192

    Article  CAS  PubMed  Google Scholar 

  12. Bu WT, Zheng J, Guo QJ, Aono T, Tazoe H, Tagami K, Uchida S, Yamada M (2014) A method of measurement of 239Pu, 240Pu, 241Pu in high U content marine sediments by sector field ICP-MS and its application to Fukushima sediment samples. Environ Sci Technol 48:534–541

    Article  CAS  PubMed  Google Scholar 

  13. Wang ZT, Zheng J, Ni YY, Men W, Tagami K, Uchida S (2017) High-performance method for determination of Pu isotopes in soil and sediment samples by sector field-inductively coupled plasma mass spectrometry. Anal Chem 89:2221–2226

    Article  CAS  PubMed  Google Scholar 

  14. Fajardo Y, Ferrer L, Gómez E, Garcias F, Casas M, Cerdà V (2008) Development of an automatic method for americium and plutonium separation and preconcentration using an multisyringe flow Injection Analysis-Multipumping Flow System. Anal Chem 80:195–202

    Article  CAS  PubMed  Google Scholar 

  15. Dai XX, Kramer-Tremblay S (2014) 5-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. Anal Chem 86:5441–5447

    Article  CAS  PubMed  Google Scholar 

  16. Varga Z (2007) Application of inductively-coupled plasma sector field mass-spectrometry for low-level environmental Am-241 analysis. Anal Chim Acta 587:165–169

    Article  CAS  PubMed  Google Scholar 

  17. Wang ZT, Zheng J, Cao LG, Tagami K, Uchida S (2016) Method for ultratrace level 241Am determination in large soil samples by sector field-inductively coupled plasma mass spectrometry: with emphasis on the removal of spectral interferences and matrix effect. Anal Chem 88:7387–7394

    Article  CAS  PubMed  Google Scholar 

  18. Zheng J, Yamada M (2008) Isotope dilution sector-field inductively coupled plasma mass spectrometry combined with extraction chromatography for rapid determination of 241Am in marine sediment samples: A case study in Sagami Bay. Japan J Oceanogr 64:541–550

    Article  CAS  Google Scholar 

  19. Luisier F, Alvarado JAC, Steinmann P, Krachler M, Froidevaux P (2009) A new method for the determination of plutonium and americium using high pressure microwave digestion and alpha-spectrometry or ICP-SMS. J Radioanal Nucl Chem 281:425–432

    Article  CAS  Google Scholar 

  20. Jakopič R, Richter S, Kühn H, Aregbe Y (2010) Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu isotope ratios in environmental reference materials and samples from Chernobyl by thermal ionization mass spectrometry (TIMS) and filament carburization. J Anal At Spectrom 25:815–821

    Article  Google Scholar 

  21. Lee MH, Jung EC, Kim WH, Jee KY (2007) Sequential separation of the actinides in environmental and radioactive waste samples. J Alloy Compo 444:544–549

    Article  Google Scholar 

  22. Guérin N, Nadeau K, Potvin S, Hardy JM, Larivière D (2013) Automated pressurized injection system for the separation of actinides by extraction chromatography. J Radioanal Nucl Chem 295:1803–1811

    Article  Google Scholar 

  23. Horwitz EP, Thakkar AH, McAlister DR (2007) A rapid method for the preconcentration of non-refractory Am and Pu from 100 g soil samples. In: The proceedings of the 10th International Symposium on Environmental Radiochemical Analysis, Royal Society of Chemistry, Cambridge, pp. 77–85.

  24. Mietelski JW, Kierepko R, Lokas E, Cwanek A, Kleszcz K, Tomankiewicz E, Mroz T, Anczkiewicz R, Szalkowski M, Was B, Bartyzel M, Misiak R (2016) Combined, sequential procedure for determination of 137Cs, 63Ni, 90Sr, 230,232Th, 234,238U, 237Np, 238,239+240Pu and 241Am applied for study on contamination of soils near Żarnowiec Lake (northern Poland). J Radioanal Nucl Chem 310:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazi ZH, Cornett RJ, Zhao XL, Kieser L (2014) Americium and plutonium separation by extraction chromatography for determination by accelerator mass spectrometry. Anal Chim Acta 829:75–80

    Article  CAS  PubMed  Google Scholar 

  26. Cornett RJ, Kazi ZH, Zhao XL, Chartrand MG, Charles RJ, Kieser WE (2015) Actinide measurements by AMS using fluoride matrices. Nucl Instrum Meth B 361:317–321

    Article  CAS  Google Scholar 

  27. Varga Z, Surányi G, Vajda N, Stefánka Z (2007) Rapid sequential determination of americium and plutonium in sediment and soil samples by ICP-SFMS and alpha-spectrometry. Radiochim Acta 95:81–87

    Article  CAS  Google Scholar 

  28. Povinec PP, Pham MK (2000) Report on the intercomparison run IAEA-384 Radionuclides in Fangataufa Lagoon Sediment, IAEA/AL/126. International Atomic Energy Agency, Monaco

    Google Scholar 

  29. Pham MK, Sanchez-Cabeza JA, Povinec PP (2005) Report on the Worldwide Intercomparison Exercise IAEA-385: Radionuclides in Irish Sea Sediment. International Atomic Energy Agency, Monaco

    Google Scholar 

  30. Shakhashiro A, Tarjan S, Ceccatelli A, Kis-Benedek G, Betti M (2012) IAEA-447: A new certified reference material for environmental radioactivity measurements. Appl Radiat Isot 70:1632–1643

    Article  CAS  PubMed  Google Scholar 

  31. NIST (1997) National Institute of Standards and Technology certificate: Standard Reference Material 4357, Ocean sediment environmental radioactivity standard. Maryland, Gaithersburg

  32. Wang ZT, Yang GS, Zheng J, Cao LG, Yu HJ, Zhu YB, Tagami K, Uchida S (2015) Effect of ashing temperature on accurate determination of plutonium in soil samples. Anal Chem 87:5511–5515

    Article  CAS  PubMed  Google Scholar 

  33. Eichrom (2014) Eichrom Technologies' product catalog for 2014, from URL https://www.eichrom.com/wp-content/uploads/2018/02/eic-2014-product-catalog-web.pdf (obtained on 2021–01–29).

  34. Qiao JX, Hou XL, Roos P, Miró M (2013) Bead injection extraction chromatography using high-capacity lab-on-valve as a front end to inductively coupled plasma mass spectrometry for urine radiobioassay. Anal Chem 85:2853–2859

    Article  CAS  PubMed  Google Scholar 

  35. Yamato A (1982) An anion exchange method for the determination of americium-241 and plutonium in environmental and biological samples. J Radioanal Nucl Chem 75:265–273

    Article  CAS  Google Scholar 

  36. Michel H, Schertz B-F, Ardisson G (2003) Sequential radiochemical separations from Alpine Wetland soils (Boreon, France) with emphasis on 90Sr measurement. J Radioanal Nucl Chem 258:209–213

    Article  CAS  Google Scholar 

  37. Zhang Y, Zheng J, Yamada M, Wu F, Igarashi Y, Hirose K (2010) Characterization of Pu concentration and its isotopic composition in a reference fallout material. Sci Total Environ 408:1139–1144

    Article  CAS  PubMed  Google Scholar 

  38. Harrison JJ, Zawadzki A, Chisari R, Wong HKY (2011) Separation and measurement of thorium, plutonium, americium, uranium and strontium in environmental matrices. J Environ Radioact 102:896–900

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell SL, Culligan BK, Hutchison JB, Spencer RB (2013) Rapid fusion method for determination of actinides in fecal samples. J Radioanal Nucl Chem 298:1533–1542

    Article  CAS  Google Scholar 

  40. Barney GS (1975) A kinetic study of the reaction of Plutonium (IV) with hydroxylamine. ARH-SA-207, Atlantic Richfield Hanford Company, Washington.

  41. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310:63–78

    Article  CAS  Google Scholar 

  42. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci Rep 2:304

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pimpl M, Higgy R (2001) Improvement of Am and Cm determination in soil samples. J Radioanal Nucl Chem 248:537–541

    Article  CAS  Google Scholar 

  44. Jia G, Desideri D, Guerra F, Meli M, Testa C (1997) Determination of plutonium and americium in moss and lichen samples. J Radioanal Nucl Chem 220:15–19

    Article  CAS  Google Scholar 

  45. IAEA (2011) Worldwide open proficiency test: Determination of natural and artificial radionuclides in moss-soil and water. IAEA-CU-2009–03. Vienna, Austria.

  46. Cwanek A, Mietelski JW, Lokas E, Olech MA, Anczkiewicz R, Misiak R (2020) The radioactive contamination study in south-western Greenland tundra in 2012–2013. J Environ Radioact 212:106125

    Article  CAS  PubMed  Google Scholar 

  47. Cwanek A, Mietelski JW, Lokas E, Olech MA, Anczkiewicz R, Misiak R (2020) Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. Chemosphere 239:124783

    Article  CAS  PubMed  Google Scholar 

  48. Xu YH, Qiao JX, Hou XL, Pan SM, Roos P (2014) Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements. Talanta 119:590–595

    Article  CAS  PubMed  Google Scholar 

  49. Kim CS, Kim CK, Lee JI, Lee KJ (2000) Rapid determination of Pu isotopes and atom ratios in small amounts of environmental samples by an on-line sample pre-treatment system and isotope dilution high resolution inductively coupled plasma mass spectrometry. J Anal At Spectrom 15:247–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science Challenge Project, China (JCKY2016212A504) and the National Natural Science Foundation of China (Grant No.21806153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xie, Y., Lin, J. et al. Rapid method for sequential determination of Pu and Am in soil and sediment samples by sector-field inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 328, 137–147 (2021). https://doi.org/10.1007/s10967-021-07627-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07627-w

Keywords

Navigation