Skip to main content
Log in

Improved combined HRGS-TIMS method for rapid determination of Pu in nuclear material samples collected in the Rokkasho reprocessing plant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A combined method of high-resolution gamma spectroscopy and thermal ionization mass spectroscopy without chemical separation was applied for plutonium assay in pure Pu and U–Pu mixed solutions collected at the Rokkasho Reprocessing Plant, Japan. The relative biases of Pu assay results determined by the combined method to the conventional IDMS are less than 0.01% in the pure Pu and the U–Pu mixed solutions. The combined method can be used as an alternative rapid method for Pu assay as a backup to the conventional IDMS method and K-edge densitometry without any loss of precision and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ottmar H, Eberle H (1991) The hybrid-K-edge/K-XRF densitometer: principle-design-performance, project reprocessing and waste disposal, Karlsruhe nuclear research institute, KIK 4590, February 1991

  2. Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283:203–223

    Article  CAS  Google Scholar 

  3. Vajda N, Pollanen R, Martin P, Kim CK (2020) Alpha spectrometry. In: L’annunziata MF (ed) Handbook of radioactivity analysis, vol 1, 4th edn. Elsvier Inc, Amsterdam

    Google Scholar 

  4. Farmer DE, Steed AC, Sobus J, Stetzenbach K, Lindley K, Hodge VF (2003) Rapid identification ana analysis of airborne plutonium using a combination of alpha spectrometry and inductively coupled plasma mass spectrometry. Health Phys 85:457–465

    Article  CAS  Google Scholar 

  5. Macsik Z, Shinonaga T (2010) Accuracy and precision of 238Pu determination at fg level by alpha spectrometry using 239Pu and 240Pu amount analyzed by ICP-MS. Appl Radiat Isot 68:2147–2152

    Article  CAS  Google Scholar 

  6. Esaka F, Yasuda K, Suzuki D, Miyamoto Y, Magara M (2017) Analysis of plutonium isotope ratios including 238Pu/239Pu in individual U-Pu mixed oxide particles by means of combination of alpha spectrometry and ICP-MS. Talanta 165:122–127

    Article  CAS  Google Scholar 

  7. Parus JL, Raab W (1996) Determination of plutonium in nuclear materials with the combination of alpha and gamma spectrometry. Nucl Instr Meth A 369:588–592

    Article  CAS  Google Scholar 

  8. Gunnink R (1990) MGA: a gamma-ray spectrum analysis code for determining plutonium isotopic abundances, Methods and Algorithms, Lawrence Livermore National Laboratory report, UCRL-LR-103220, Vol. 1

  9. Gunnink R, Ruhter WD (1990) MGA: a gamma-ray spectrum analysis code for determining plutonium isotopic abundances, A guide to using MGA, Lawrence Livermore National Laboratory report, UCRL-LR-103220, Vol. 2

  10. Raptis K, Duhamel G, Ludwig R, Balsley S, Burger S, Mayorov V, Koepf A, Hara S, Itoh Y, Yamaguchi K, Yamaguchi T, Ninagawa J (2013) Measurement of non-separated U/Pu samples: optimization of TIMS procedures for safeguards purposes at Rokkasho on-site laboratory. J Radioanal Nucl Chem 296:585–592

    Article  CAS  Google Scholar 

  11. Quemet A, Ruas A, Dalier V, Rivier C (2018) Americium isotope analysiss by thermal ionization mass spectrometry using the total evaporation method. Inter J Mass Spec 431:8–14

    Article  CAS  Google Scholar 

  12. Dubois JC, Retali G, Cesario J (1992) Isotopic analysis of rare earth elements by total evaporation of samples in thermal ionization mass spectrometry. Inter J Mass Spec 120:163–177

    Article  CAS  Google Scholar 

  13. Lee CG, Suzuki D, Saito-Kokubu Y, Esaka F, Magara M, Kimura T (2012) Simultaneous determination of plutonium and uranium isotope ratios in individual plutonium-uranium mixed particles by thermal ionization mass spectrometry. Int J Mass Spectrum 314:57–62

    Article  CAS  Google Scholar 

  14. Sampson T E (2003) Plutonium Isotopic Analysis using PC/FRAM, Los Alamos National Laboratory report, LA-UR-03–4403

  15. Sampson T E (1991) Plutonium Isotopic Composition by Gamma-Ray Spectroscopy. In: Reilly D, Ensslin N, Smith H, Kreiner S (Eds), Passive Nondestructive Assay of Nuclear Materials, US Nuclear Regulation Commission, NUREG/CR-5550, LA-UR-90–732, 221–271

  16. Kim C-K, Bulyha S, Duhamel G, Nizhnik V, Bosko A, Nakazawa D, Hara S, Mise K (2018) A combined method of TIMS and HRGS for rapid determination of Pu concentrations in safeguards samples at the on-site laboratory in the Rokkasho reprocessing plant. IAEA Symposium on international safeguards, 5–9 November

  17. FRAM default v51 (2011) Latest default in Pu_Plnr_060–230

  18. International target values 2010 for measurement uncertainties in safeguarding nuclear materials, Vienna, November 2010, IAEA-STR-368

  19. Sampson T, Kelley T, Vo D (2003) Application Guide to Gamma-Ray Isotopic Analysis Using the FRAM Software, Los Alamos National Laboratory report LA-14018

  20. Aggarwal SK (2016) Thermal ionization mass spectrometry (TIMS) in nuclear science and technology—a review. Anal Methods 8:942–957

    Article  Google Scholar 

  21. Bürger S, Balsley SD, Baumann S, Berger J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Uranium and plutonium analysis of nuclear material samples by multi-collector thermal ionization mass spectrometry: quality control, measurement uncertainty, and metrological traceability. Inter J Mass Spec 311:40–50

    Article  CAS  Google Scholar 

  22. New Brunswick Laboratory Certified Reference Materials Certificate of Analysis, CRM137, New Brunswick Laboratory. https://science.energy.gov/nbl/certified-reference-materials/prices-and-certificates/plutonium-certified-reference-materials-price-list/

  23. ISO 15366-1 (2014) Nuclear fuel technology-chemical separation and purification of uranium and plutonium in nitric acid solutions for isotopic and isotopic dilution analysis by solvent extraction chromatography-part 1: samples containing plutonium in microgram range and uranium in the milligram range, International Organization for Standardization, Geneva, Switzerland

  24. Ziegler H, Mayer K (1999) Development of optimized method for faster and more reliable automated U/Pu/Np separation. Radiochim Acta 86:123–128

    Article  CAS  Google Scholar 

  25. ISO 7870–2 (2013) Control charts-Shewhart control charts

  26. New Brunswick Laboratory Certified Reference Materials Certificate of Analysis, CRM116, New Brunswick Laboratory. https://science.energy.gov/nbl/certified-reference-materials/prices-and-certificates/plutonium-certified-reference-materials-price-list/

  27. New Brunswick Laboratory Certified Reference Materials Certificate of Analysis, CRM126-A, New Brunswick Laboratory. https://science.energy.gov/nbl/certified-reference-materials/prices-and-certificates/plutonium-certified-reference-materials-price-list/

  28. ASTM C1672–07 (2007), Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

  29. Certificate for KRI RM1–662–2004 (2004), V.G. Khlopin Radium Institute

  30. New Brunswick Laboratory Certified Reference Materials Certificate of Analysis, CRM128, New Brunswick Laboratory. https://science.energy.gov/nbl/certified-reference-materials/prices-and-certificates/plutonium-certified-reference-materials-price-list/

  31. Vian A (2004) In: Quantifying uncertainty in nuclear analytical measurements, IAEA-TECDOC-1401

  32. ISO (1993) Guide to the expression of uncertainty in measurement. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  33. Ellison S L R, Williams A (2011) Eurachem/Citac Guide: quantifying uncertainty in analytical measurement CG4, 3rd ed., QUAM: 2012, P1

Download references

Acknowledgements

We thank the kind and efficient help of Nuclear Material Control Center (NMCC)-Rokkasho Safeguards Center (RSC) staff, especially Dr. K. Yoshiyasu and Mr. T. Nakamura for their technical support and comments for the TIMS measurement at the OSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Kyu Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, CK., Nakazawa, D., Duhamel, G. et al. Improved combined HRGS-TIMS method for rapid determination of Pu in nuclear material samples collected in the Rokkasho reprocessing plant. J Radioanal Nucl Chem 328, 49–63 (2021). https://doi.org/10.1007/s10967-021-07621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07621-2

Keywords

Navigation