Skip to main content
Log in

Research on the application potential of spent biological activated carbon from BAC process to remove radionuclides Sr2+ from water

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The spent biological activated carbon (SBAC) as solid waste is used to study the removal of radioactive Sr2+ in water. The results show that SBAC adsorbs Sr2+ reaching equilibrium within 3 min and the adsorption is an exothermic reaction. The removal rate can reach more than 85%, desorption rate is less than 6.16%, and it can also achieve 40% removal in river water. The three-round regeneration efficiencies are all ~ 100%. The adsorption process is without secondary pollution. SBAC has good potential for the removal of radioactive Sr2+ in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Castrillejo M, Casacuberta N, Breier CF, Pike SM, Masqué P, Buesseler KO (2016) Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident. Environ Sci Technol 50(1):173–180. https://doi.org/10.1021/acs.est.5b03903

    Article  CAS  PubMed  Google Scholar 

  2. Attallah MF, Rizk SE, Shady SA (2018) Separation of 152 + 154Eu, 90Sr from radioactive waste effluent using liquid–liquid extraction by polyglycerol phthalate. Nucl Sci Tech 29(6):84. https://doi.org/10.1007/s41365-018-0423-z

    Article  Google Scholar 

  3. Ghandhi SA, Weber W, Melo D, Doyle-Eisele M, Chowdhury M, Guilmette R, Amundson SA (2015) Effect of 90Sr internal emitter on gene expression in mouse blood. BMC Genom. https://doi.org/10.1186/s12864-015-1774-z

    Article  Google Scholar 

  4. Zhang Z, Gu P, Zhang M, Yan S, Dong L, Zhang G (2019) Synthesis of a robust layered metal sulfide for rapid and effective removal of Sr2 + from aqueous solutions. Chem Eng J 372:1205–1215. https://doi.org/10.1016/j.cej.2019.04.193

    Article  CAS  Google Scholar 

  5. Wu L, Zhang G, Wang Q, La Hou GuP (2014) Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process. Desalination 349:31–38. https://doi.org/10.1016/j.desal.2014.06.020

    Article  CAS  Google Scholar 

  6. Zhang L, Lu Y, Liu Y-L, Li M, Zhao H-Y, Hou L-A (2016) High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. J Hazard Mater 320:187–193. https://doi.org/10.1016/j.jhazmat.2016.08.020

    Article  CAS  PubMed  Google Scholar 

  7. Deli D, Law K, Liu Z, Crouch DJ, Livens FR, Yeates SG (2012) Selective removal of 90Sr and 60Co from aqueous solution using N-aza-crown ether functional poly(NIPAM) hydrogels. React Funct Polym 72(6):414–419. https://doi.org/10.1016/j.reactfunctpolym.2012.03.013

    Article  CAS  Google Scholar 

  8. Wen T, Zhao Z, Shen C, Li J, Tan X, Zeb A, Wang X, Xu AW (2016) Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive (90)Sr(2 +) and (137)Cs(+) ions and oils. Sci Rep 6:20920. https://doi.org/10.1038/srep20920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Attallah MF, Borai EH, Hilal MA, Shehata FA, Abo-Aly MM (2011) Utilization of different crown ethers impregnated polymeric resin for treatment of low level liquid radioactive waste by column chromatography. J Hazard Mater 195:73–81. https://doi.org/10.1016/j.jhazmat.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Huang C-P, Lin T-Y, Chiao L-H, Chen H-B (2012) Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor’s spent fuel pool. J Hazard Mater 233–234:140–147. https://doi.org/10.1016/j.jhazmat.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  11. Sahai N, Carroll SA, Roberts S, O’Day PA (2000) X-ray absorption spectroscopy of strontium(II) coordination: II. Sorption and precipitation at kaolinite, amorphous silica, and goethite surfaces. J Colloid Interface Sci 222(2):198–212. https://doi.org/10.1006/jcis.1999.6562

    Article  CAS  PubMed  Google Scholar 

  12. Karasyova ON, Ivanova LI, Lakshtanov LZ, Lövgren L (1999) Strontium sorption on hematite at elevated temperatures. J Colloid Interface Sci 220(2):419–428. https://doi.org/10.1006/jcis.1999.6474

    Article  CAS  PubMed  Google Scholar 

  13. Liang T-J, Hsu C-N, Liou D-C (1993) Modified Freundlich sorption of cesium and strontium on Wyoming bentonite. Appl Radiat Isot 44(9):1205–1208. https://doi.org/10.1016/0969-8043(93)90065-I

    Article  CAS  Google Scholar 

  14. Jeong CH (2001) Mineralogical and hydrochemical effects on adsorption removal of cesium-137 and strontium-90 by kaolinite. J Environ Sci Health Part A Toxic Hazard Subst Environ Eng 6(36):1089–1099

    Article  Google Scholar 

  15. Papachristodoulou CA, Assimakopoulos PA, Gangas NHJ (2002) Strontium adsorption properties of an aluminum-pillared montmorillonite carrying carboxylate functional groups. J Colloid Interface Sci 245(1):32–39. https://doi.org/10.1006/jcis.2001.7988

    Article  CAS  PubMed  Google Scholar 

  16. Cole T, Bidoglio G, Soupioni M, O’Gorman M, Gibson N (2000) Diffusion mechanisms of multiple strontium species in clay. Geochim Cosmochim Acta 64(3):385–396. https://doi.org/10.1016/S0016-7037(99)00324-5

    Article  CAS  Google Scholar 

  17. Shawabkeh RA, Rockstraw DA, Bhada RK (2002) Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40(5):781–786. https://doi.org/10.1016/S0008-6223(01)00198-1

    Article  CAS  Google Scholar 

  18. Al-Jubouri SM, Curry NA, Holmes SM (2016) Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste. J Hazard Mater 320:241–251. https://doi.org/10.1016/j.jhazmat.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M, Gu P, Zhang Z, Liu J, Dong L, Zhang G (2018) Effective, rapid and selective adsorption of radioactive Sr2 + from aqueous solution by a novel metal sulfide adsorbent. Chem Eng J 351:668–677. https://doi.org/10.1016/j.cej.2018.06.069

    Article  CAS  Google Scholar 

  20. Dong L, Hou L, Wang Z, Gu P, Chen G, Jiang R (2018) A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism. J Hazard Mater 359(OCT.5):76–84

    Article  CAS  Google Scholar 

  21. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235(1):306–318. https://doi.org/10.1016/j.desal.2008.01.018

    Article  CAS  Google Scholar 

  22. Moloukhia H, Hegazy WS, Abdel-Galil EA, Mahrous SS (2016) Removal of Eu3 + , Ce3 + , Sr2 + , and Cs + ions from radioactive waste solutions by modified activated carbon prepared from coconut shells. Chem Ecol 32(4):324–345. https://doi.org/10.1080/02757540.2016.1139089

    Article  CAS  Google Scholar 

  23. Caccin M, Giacobbo F, Da Ros M, Besozzi L, Mariani M (2013) Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J Radioanal Nucl Chem 297(1):9–18. https://doi.org/10.1007/s10967-012-2305-x

    Article  CAS  Google Scholar 

  24. Kubota T, Fukutani S, Ohta T, Mahara Y (2013) Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. J Radioanal Nucl Chem 296(2):981–984. https://doi.org/10.1007/s10967-012-2068-4

    Article  CAS  Google Scholar 

  25. Andersson A, Laurent P, Kihn A, Prévost M, Servais P (2001) Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment. Water Res 35(12):2923–2934

    Article  CAS  Google Scholar 

  26. Dong L, Pan S, Liu J, Wang Z, La Hou, Chen G (2020) Performance and mechanism of Pb(II) removal from water by the spent biological activated carbon (SBAC) with different using-time. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101255

    Article  Google Scholar 

  27. Sato I, Kudo H, Tsuda S (2011) Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water. J Toxicol Sci 36(6):829–834

    Article  CAS  Google Scholar 

  28. International ASoTM (2014) Standard practice for determination of adsorptive capacity of activated carbon by aqueous phase isotherm technique, vol ASTM D3860-98. West Conshohocken, PA. https://doi.org/10.1520/d3860-98r14

  29. Attallah MF, Borai EH, Allan KF (2009) Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 51(6):622–627. https://doi.org/10.1134/s1066362209060113

    Article  CAS  Google Scholar 

  30. Attallah MF, Abd-Elhamid AI, Ahmed IM, Aly HF (2018) Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste. J Mol Liq 261:379–386. https://doi.org/10.1016/j.molliq.2018.04.050

    Article  CAS  Google Scholar 

  31. Nayl AA, Ahmed IM, Abd-Elhamid AI, Aly HF, Attallah MF (2020) Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116060

    Article  Google Scholar 

  32. Rizk HE, Attallah MF, Ali AMI (2017) Investigations on sorption performance of some radionuclides, heavy metals and lanthanides using mesoporous adsorbent material. J Radioanal Nucl Chem 314(3):2475–2487. https://doi.org/10.1007/s10967-017-5620-4

    Article  CAS  Google Scholar 

  33. Attallah MF, Allan KF, Mahmoud MR (2015) Synthesis of poly(acrylic acid–maleic acid)SiO2/Al2O3 as novel composite material for cesium removal from acidic solutions. J Radioanal Nucl Chem 307(2):1231–1241. https://doi.org/10.1007/s10967-015-4349-1

    Article  CAS  Google Scholar 

  34. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318

    Article  CAS  Google Scholar 

  35. Alarifi A, Hanafi H (2010) Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon. J At Mol Sci. https://doi.org/10.4208/jams.100809.112309a

    Article  Google Scholar 

  36. Ganesh I, Sekhar PSC, Padmanabham G, Sundararajan G (2012) Influence of Li-doping on structural characteristics and photocatalytic activity of ZnO nano-powder formed in a novel solution pyro-hydrolysis route. Appl Surf Sci 259:524–537. https://doi.org/10.1016/j.apsusc.2012.07.077

    Article  CAS  Google Scholar 

  37. Attallah MF, Hassan HS, Youssef MA (2019) Synthesis and sorption potential study of Al2O3ZrO2CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl Radiat Isot 147:40–47. https://doi.org/10.1016/j.apradiso.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  38. Hamed MM, Attallah MF, Metwally SS (2014) Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene. Radiochim Acta. https://doi.org/10.1515/ract-2013-2200

    Article  Google Scholar 

  39. Borai EH, Hilal MA, Attallah MF, Shehata FA (2008) Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim Acta 96(7):441–447. https://doi.org/10.1524/ract.2008.1506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Jiang for the SBAC samples, and Tianjin University Testing Center of Environmental Quality for the testing of heavy metals.

Funding

This work was supported by Major Science and Technology Program for Water Pollution Control and Management in China [grant numbers 2015ZX07406006]; and the Independent Innovation Fund and Graduate Innovative Talent Training Project of Tianjin University, China [Grant Numbers 2018XZC-0080 and YC19056].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Wu, C., Han, Y. et al. Research on the application potential of spent biological activated carbon from BAC process to remove radionuclides Sr2+ from water. J Radioanal Nucl Chem 327, 1179–1190 (2021). https://doi.org/10.1007/s10967-021-07596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07596-0

Keywords

Navigation